» Articles » PMID: 33426376

In Situ Remodeling Overrules Bioinspired Scaffold Architecture of Supramolecular Elastomeric Tissue-Engineered Heart Valves

Abstract

In situ tissue engineering that uses resorbable synthetic heart valve scaffolds is an affordable and practical approach for heart valve replacement; therefore, it is attractive for clinical use. This study showed no consistent collagen organization in the predefined direction of electrospun scaffolds made from a resorbable supramolecular elastomer with random or circumferentially aligned fibers, after 12 months of implantation in sheep. These unexpected findings and the observed intervalvular variability highlight the need for a mechanistic understanding of the long-term in situ remodeling processes in large animal models to improve predictability of outcome toward robust and safe clinical application.

Citing Articles

ROS Scavenging and Osteogenic Differentiation Potential of L-Methionine-Substituted Poly(Organophosphazene) Electrospun Fibers.

Wang M, Mequanint K Biomimetics (Basel). 2024; 9(11).

PMID: 39590248 PMC: 11592370. DOI: 10.3390/biomimetics9110676.


Recent advancements in polymeric heart valves: From basic research to clinical trials.

Wang Y, Fu Y, Wang Q, Kong D, Wang Z, Liu J Mater Today Bio. 2024; 28:101194.

PMID: 39221196 PMC: 11364905. DOI: 10.1016/j.mtbio.2024.101194.


Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds.

Snyder Y, Mann F, Middleton J, Murashita T, Carney J, Bianco R Appl Mater Today. 2024; 39.

PMID: 39131741 PMC: 11308761. DOI: 10.1016/j.apmt.2024.102323.


Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering.

Xu C, Yang K, Xu Y, Meng X, Zhou Y, Xu Y J Nanobiotechnology. 2024; 22(1):378.

PMID: 38943185 PMC: 11212200. DOI: 10.1186/s12951-024-02656-5.


Off-the-Shelf Synthetic Biodegradable Grafts Transform In Situ into a Living Arteriovenous Fistula in a Large Animal Model.

Besseling P, Szymczyk W, Teraa M, Toorop R, Wu D, Driessen R Adv Healthc Mater. 2024; 13(17):e2303888.

PMID: 38451476 PMC: 11469054. DOI: 10.1002/adhm.202303888.


References
1.
Serrani M, Brubert J, Stasiak J, De Gaetano F, Zaffora A, Costantino M . A Computational Tool for the Microstructure Optimization of a Polymeric Heart Valve Prosthesis. J Biomech Eng. 2016; 138(6):061001. PMC: 4866470. DOI: 10.1115/1.4033178. View

2.
van Hout G, Teuben M, Heeres M, de Maat S, De Jong R, Maas C . Invasive surgery reduces infarct size and preserves cardiac function in a porcine model of myocardial infarction. J Cell Mol Med. 2015; 19(11):2655-63. PMC: 4627570. DOI: 10.1111/jcmm.12656. View

3.
Neumann A, Sarikouch S, Breymann T, Cebotari S, Boethig D, Horke A . Early systemic cellular immune response in children and young adults receiving decellularized fresh allografts for pulmonary valve replacement. Tissue Eng Part A. 2013; 20(5-6):1003-11. PMC: 3938920. DOI: 10.1089/ten.TEA.2013.0316. View

4.
Kluin J, Talacua H, Smits A, Emmert M, Brugmans M, Fioretta E . In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep. Biomaterials. 2017; 125:101-117. DOI: 10.1016/j.biomaterials.2017.02.007. View

5.
Krynauw H, Buescher J, Koehne J, Verrijt L, Limbert G, Davies N . Tissue Ingrowth Markedly Reduces Mechanical Anisotropy and Stiffness in Fibre Direction of Highly Aligned Electrospun Polyurethane Scaffolds. Cardiovasc Eng Technol. 2020; 11(4):456-468. DOI: 10.1007/s13239-020-00475-x. View