» Articles » PMID: 33426010

The Role of Artificial Intelligence in Cardiovascular Imaging: State of the Art Review

Overview
Date 2021 Jan 11
PMID 33426010
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

In this current digital landscape, artificial intelligence (AI) has established itself as a powerful tool in the commercial industry and is an evolving technology in healthcare. Cutting-edge imaging modalities outputting multi-dimensional data are becoming increasingly complex. In this era of data explosion, the field of cardiovascular imaging is undergoing a paradigm shift toward machine learning (ML) driven platforms. These diverse algorithms can seamlessly analyze information and automate a range of tasks. In this review article, we explore the role of ML in the field of cardiovascular imaging.

Citing Articles

Vertebral Heart Score and Vertebral Left Atrial Size as Radiographic Measurements for Cardiac Size in Dogs-A Literature Review.

Baisan R, Vulpe V Animals (Basel). 2025; 15(5).

PMID: 40075966 PMC: 11899317. DOI: 10.3390/ani15050683.


Artificial Intelligence and Its Role in Diagnosing Heart Failure: A Narrative Review.

Medhi D, Kamidi S, Mamatha Sree K, Shaikh S, Rasheed S, Thengu Murichathil A Cureus. 2024; 16(5):e59661.

PMID: 38836155 PMC: 11148729. DOI: 10.7759/cureus.59661.


Artificial Intelligence in Cardiology and Atherosclerosis in the Context of Precision Medicine: A Scoping Review.

Kolaszynska O, Lorkowski J Appl Bionics Biomech. 2024; 2024:2991243.

PMID: 38715681 PMC: 11074834. DOI: 10.1155/2024/2991243.


Broadening Perspectives of Artificial Intelligence in Echocardiography.

Seetharam K, Thyagaturu H, Ferreira G, Patel A, Patel C, Elahi A Cardiol Ther. 2024; 13(2):267-279.

PMID: 38703292 PMC: 11093957. DOI: 10.1007/s40119-024-00368-3.


Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association.

Armoundas A, Narayan S, Arnett D, Spector-Bagdady K, Bennett D, Celi L Circulation. 2024; 149(14):e1028-e1050.

PMID: 38415358 PMC: 11042786. DOI: 10.1161/CIR.0000000000001201.


References
1.
Kusunose K, Haga A, Yamaguchi N, Abe T, Fukuda D, Yamada H . Deep Learning for Assessment of Left Ventricular Ejection Fraction from Echocardiographic Images. J Am Soc Echocardiogr. 2020; 33(5):632-635.e1. DOI: 10.1016/j.echo.2020.01.009. View

2.
Bhavnani S, Sola S, Adams D, Venkateshvaran A, Dash P, Sengupta P . A Randomized Trial of Pocket-Echocardiography Integrated Mobile Health Device Assessments in Modern Structural Heart Disease Clinics. JACC Cardiovasc Imaging. 2017; 11(4):546-557. DOI: 10.1016/j.jcmg.2017.06.019. View

3.
Zhang J, Gajjala S, Agrawal P, Tison G, Hallock L, Beussink-Nelson L . Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation. 2018; 138(16):1623-1635. PMC: 6200386. DOI: 10.1161/CIRCULATIONAHA.118.034338. View

4.
Bhuva A, Bai W, Lau C, Davies R, Ye Y, Bulluck H . A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis. Circ Cardiovasc Imaging. 2019; 12(10):e009214. DOI: 10.1161/CIRCIMAGING.119.009214. View

5.
Donal E, Hubert A, Le Rolle V, Leclercq C, Martins R, Mabo P . New Multiparametric Analysis of Cardiac Dyssynchrony: Machine Learning and Prediction of Response to CRT. JACC Cardiovasc Imaging. 2019; 12(9):1887-1888. DOI: 10.1016/j.jcmg.2019.03.009. View