Baisan R, Vulpe V
Animals (Basel). 2025; 15(5).
PMID: 40075966
PMC: 11899317.
DOI: 10.3390/ani15050683.
Medhi D, Kamidi S, Mamatha Sree K, Shaikh S, Rasheed S, Thengu Murichathil A
Cureus. 2024; 16(5):e59661.
PMID: 38836155
PMC: 11148729.
DOI: 10.7759/cureus.59661.
Kolaszynska O, Lorkowski J
Appl Bionics Biomech. 2024; 2024:2991243.
PMID: 38715681
PMC: 11074834.
DOI: 10.1155/2024/2991243.
Seetharam K, Thyagaturu H, Ferreira G, Patel A, Patel C, Elahi A
Cardiol Ther. 2024; 13(2):267-279.
PMID: 38703292
PMC: 11093957.
DOI: 10.1007/s40119-024-00368-3.
Armoundas A, Narayan S, Arnett D, Spector-Bagdady K, Bennett D, Celi L
Circulation. 2024; 149(14):e1028-e1050.
PMID: 38415358
PMC: 11042786.
DOI: 10.1161/CIR.0000000000001201.
Development of an artificial intelligence-based method for the diagnosis of the severity of myxomatous mitral valve disease from canine chest radiographs.
Valente C, Wodzinski M, Guglielmini C, Poser H, Chiavegato D, Zotti A
Front Vet Sci. 2023; 10:1227009.
PMID: 37808107
PMC: 10556456.
DOI: 10.3389/fvets.2023.1227009.
Opportunistic screening at chest computed tomography: literature review of cardiovascular significance of incidental findings.
Canan A, Ghandour A, Saboo S, Rajiah P
Cardiovasc Diagn Ther. 2023; 13(4):743-761.
PMID: 37675086
PMC: 10478026.
DOI: 10.21037/cdt-23-79.
Evaluation of convolutional neural networks for the detection of inter-breath-hold motion from a stack of cardiac short axis slice images.
Kim Y, Kim M
BMC Med Imaging. 2023; 23(1):113.
PMID: 37620849
PMC: 10463654.
DOI: 10.1186/s12880-023-01070-x.
Current role and future perspectives of artificial intelligence in echocardiography.
Vidal-Perez R, Grapsa J, Bouzas-Mosquera A, Fontes-Carvalho R, Vazquez-Rodriguez J
World J Cardiol. 2023; 15(6):284-292.
PMID: 37397831
PMC: 10308270.
DOI: 10.4330/wjc.v15.i6.284.
Beyond high hopes: A scoping review of the 2019-2021 scientific discourse on machine learning in medical imaging.
Nittas V, Daniore P, Landers C, Gille F, Amann J, Hubbs S
PLOS Digit Health. 2023; 2(1):e0000189.
PMID: 36812620
PMC: 9931290.
DOI: 10.1371/journal.pdig.0000189.
Artificial Intelligence and Precision Health Through Lenses of Ethics and Social Determinants of Health: Protocol for a State-of-the-Art Literature Review.
Wamala-Andersson S, Richardson M, Stridsberg S, Ryan J, Sukums F, Goh Y
JMIR Res Protoc. 2023; 12:e40565.
PMID: 36692922
PMC: 9906311.
DOI: 10.2196/40565.
Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare.
Gill S, Karwath A, Uh H, Cardoso V, Gu Z, Barsky A
Eur Heart J. 2023; 44(9):713-725.
PMID: 36629285
PMC: 9976986.
DOI: 10.1093/eurheartj/ehac758.
Artificial intelligence in cardiology: Hope for the future and power for the present.
Karatzia L, Aung N, Aksentijevic D
Front Cardiovasc Med. 2022; 9:945726.
PMID: 36312266
PMC: 9608631.
DOI: 10.3389/fcvm.2022.945726.
Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging.
Wellnhofer E
Front Cardiovasc Med. 2022; 9:890809.
PMID: 35935648
PMC: 9354141.
DOI: 10.3389/fcvm.2022.890809.
2022 Artificial intelligence primer for the nuclear cardiologist.
Motwani M
J Nucl Cardiol. 2022; 30(6):2441-2453.
PMID: 35854041
DOI: 10.1007/s12350-022-03049-7.
Applications of Machine Learning in Cardiology.
Seetharam K, Balla S, Bianco C, Cheung J, Pachulski R, Asti D
Cardiol Ther. 2022; 11(3):355-368.
PMID: 35829916
PMC: 9381660.
DOI: 10.1007/s40119-022-00273-7.
Artificial Intelligence Advancements in the Cardiovascular Imaging of Coronary Atherosclerosis.
Covas P, De Guzman E, Barrows I, Bradley A, Choi B, Krepp J
Front Cardiovasc Med. 2022; 9:839400.
PMID: 35387447
PMC: 8977643.
DOI: 10.3389/fcvm.2022.839400.
Advances in Machine Learning Approaches to Heart Failure with Preserved Ejection Fraction.
Ahmad F, Luo Y, Wehbe R, Thomas J, Shah S
Heart Fail Clin. 2022; 18(2):287-300.
PMID: 35341541
PMC: 8983114.
DOI: 10.1016/j.hfc.2021.12.002.
Dissecting miRNA-Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine.
Chatzopoulou F, Kyritsis K, Papagiannopoulos C, Galatou E, Mittas N, Theodoroula N
Cells. 2022; 11(4).
PMID: 35203258
PMC: 8870388.
DOI: 10.3390/cells11040607.
A Risk-Stratification Machine Learning Framework for the Prediction of Coronary Artery Disease Severity: Insights From the GESS Trial.
Mittas N, Chatzopoulou F, Kyritsis K, Papagiannopoulos C, Theodoroula N, Papazoglou A
Front Cardiovasc Med. 2022; 8:812182.
PMID: 35118145
PMC: 8804295.
DOI: 10.3389/fcvm.2021.812182.