» Articles » PMID: 33420412

Neurexins: Molecular Codes for Shaping Neuronal Synapses

Overview
Specialty Neurology
Date 2021 Jan 9
PMID 33420412
Citations 81
Authors
Affiliations
Soon will be listed here.
Abstract

The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.

Citing Articles

Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism.

Arias-Aragon F, Robles-Lanuza E, Sanchez-Gomez A, Martinez-Mir A, Scholl F Mol Brain. 2025; 18(1):20.

PMID: 40087687 DOI: 10.1186/s13041-025-01183-0.


Rare missense variants of the leukocyte common antigen related receptor (LAR) display reduced activity in transcellular adhesion and synapse formation.

Kaas M, Chofflet N, Bicer D, Skeldal S, Duan J, Feller B bioRxiv. 2025; .

PMID: 40027832 PMC: 11870473. DOI: 10.1101/2025.02.16.638491.


Unbiased CSF Proteomics in Patients With Idiopathic Normal Pressure Hydrocephalus to Identify Molecular Signatures and Candidate Biomarkers.

de Geus M, Wu C, Dodge H, Leslie S, Wang W, Lam T Neurology. 2025; 104(5):e213375.

PMID: 39951680 PMC: 11837848. DOI: 10.1212/WNL.0000000000213375.


Reconstitution of synaptic junctions orchestrated by teneurin-latrophilin complexes.

Zhang X, Chen X, Matus D, Sudhof T Science. 2025; 387(6731):322-329.

PMID: 39818903 PMC: 11808628. DOI: 10.1126/science.adq3586.


Cephalic ganglia transcriptomics of the American cockroach Periplaneta americana (Blattodea: Blattidae).

Levy I, Arvidson R J Insect Sci. 2024; 24(6).

PMID: 39688382 PMC: 11650548. DOI: 10.1093/jisesa/ieae113.


References
1.
Lu W, Bushong E, Shih T, Ellisman M, Nicoll R . The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function. Neuron. 2013; 78(3):433-9. PMC: 3666354. DOI: 10.1016/j.neuron.2013.02.030. View

2.
Sigler A, Oh W, Imig C, Altas B, Kawabe H, Cooper B . Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Neuron. 2017; 94(2):304-311.e4. PMC: 5418202. DOI: 10.1016/j.neuron.2017.03.029. View

3.
Sando R, Bushong E, Zhu Y, Huang M, Considine C, Phan S . Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission. Neuron. 2017; 94(2):312-321.e3. PMC: 5521186. DOI: 10.1016/j.neuron.2017.03.047. View

4.
Hobert O . Terminal Selectors of Neuronal Identity. Curr Top Dev Biol. 2016; 116:455-75. DOI: 10.1016/bs.ctdb.2015.12.007. View

5.
Hassan B, Hiesinger P . Beyond Molecular Codes: Simple Rules to Wire Complex Brains. Cell. 2015; 163(2):285-91. PMC: 4600127. DOI: 10.1016/j.cell.2015.09.031. View