» Articles » PMID: 33400146

Emerging Molecular Subtypes and Therapeutic Targets in B-cell Precursor Acute Lymphoblastic Leukemia

Overview
Journal Front Med
Specialty General Medicine
Date 2021 Jan 5
PMID 33400146
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by genetic alterations with high heterogeneity. Precise subtypes with distinct genomic and/or gene expression patterns have been recently revealed using high-throughput sequencing technology. Most of these profiles are associated with recurrent non-overlapping rearrangements or hotspot point mutations that are analogous to the established subtypes, such as DUX4 rearrangements, MEF2D rearrangements, ZNF384/ZNF362 rearrangements, NUTM1 rearrangements, BCL2/MYC and/or BCL6 rearrangements, ETV6-RUNX1-like gene expression, PAX5alt (diverse PAX5 alterations, including rearrangements, intragenic amplifications, or mutations), and hotspot mutations PAX5 (p.Pro80Arg) with biallelic PAX5 alterations, IKZF1 (p.Asn159Tyr), and ZEB2 (p.His1038Arg). These molecular subtypes could be classified by gene expression patterns with RNA-seq technology. Refined molecular classification greatly improved the treatment strategy. Multiagent therapy regimens, including target inhibitors (e.g., imatinib), immunomodulators, monoclonal antibodies, and chimeric antigen receptor T-cell (CAR-T) therapy, are transforming the clinical practice from chemotherapy drugs to personalized medicine in the field of risk-directed disease management. We provide an update on our knowledge of emerging molecular subtypes and therapeutic targets in BCP-ALL.

Citing Articles

Hiding in plain sight: NUT carcinoma is an unrecognized subtype of squamous cell carcinoma of the lungs and head and neck.

Luo J, Bishop J, Dubois S, Hanna G, Sholl L, Stelow E Nat Rev Clin Oncol. 2025; .

PMID: 39900969 DOI: 10.1038/s41571-025-00986-3.


Efficacy of bortezomib combined with Hyper-CVAD in adults with relapsed acute lymphoblastic leukemia or positive measurable residual disease; effect of bortezomib in leukemia.

Ramos Penafiel C, Perez Samano D, Gallardo Rodriguez A, Terreros Palacio C, Olarte Carrillo I, Martinez Murillo C Blood Res. 2025; 60(1):4.

PMID: 39808385 PMC: 11732791. DOI: 10.1007/s44313-024-00050-6.


Philadelphia chromosome-positive or Philadelphia chromosome-like B-cell precursor acute lymphoblastic leukemia with multilineage involvement in pediatric patients: a report of two cases and literature review.

Lin H, Chen L, Huang R, Xue S, Sun G, Wang C Pharmacogenet Genomics. 2024; 35(3):110-115.

PMID: 39470068 PMC: 11855993. DOI: 10.1097/FPC.0000000000000554.


CD36 cell surface expression as a surrogate marker to identify ABL/JAK-class kinase fusions in pediatric BCP-ALL.

Strullu M, Caye-Eude A, Robert E, Renard J, Chaye A, Galimand J Leukemia. 2024; 39(1):64-74.

PMID: 39420220 DOI: 10.1038/s41375-024-02421-5.


Acute lymphoblastic leukaemia.

Pagliaro L, Chen S, Herranz D, Mecucci C, Harrison C, Mullighan C Nat Rev Dis Primers. 2024; 10(1):41.

PMID: 38871740 DOI: 10.1038/s41572-024-00525-x.


References
1.
Pui C . Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia. Front Med. 2014; 9(1):1-9. DOI: 10.1007/s11684-015-0381-3. View

2.
Huang K, Mashl R, Wu Y, Ritter D, Wang J, Oh C . Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018; 173(2):355-370.e14. PMC: 5949147. DOI: 10.1016/j.cell.2018.03.039. View

3.
Stadler Z, Schrader K, Vijai J, Robson M, Offit K . Cancer genomics and inherited risk. J Clin Oncol. 2014; 32(7):687-98. PMC: 5795694. DOI: 10.1200/JCO.2013.49.7271. View

4.
Iacobucci I, Mullighan C . Genetic Basis of Acute Lymphoblastic Leukemia. J Clin Oncol. 2017; 35(9):975-983. PMC: 5455679. DOI: 10.1200/JCO.2016.70.7836. View

5.
Genovese G, Kahler A, Handsaker R, Lindberg J, Rose S, Bakhoum S . Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014; 371(26):2477-87. PMC: 4290021. DOI: 10.1056/NEJMoa1409405. View