» Articles » PMID: 33398033

Activation of Mitochondrial TUFM Ameliorates Metabolic Dysregulation Through Coordinating Autophagy Induction

Overview
Journal Commun Biol
Specialty Biology
Date 2021 Jan 5
PMID 33398033
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Disorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem's biological activity, the target protein was identified via combined drug affinity responsive target stability and LC-MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.

Citing Articles

Identification by GWAS of marker haplotypes relevant to breed potato for Globodera pallida resistance.

Leuenberger J, Esnault F, Lebas P, Fournet S, Cann M, Marhadour S Theor Appl Genet. 2025; 138(3):52.

PMID: 39992466 PMC: 11850554. DOI: 10.1007/s00122-024-04794-8.


Caspase 3 and caspase 7 promote cytoprotective autophagy and the DNA damage response during non-lethal stress conditions in human breast cancer cells.

Samarasekera G, Go N, Choutka C, Xu J, Takemon Y, Chan J PLoS Biol. 2025; 23(3):e3003034.

PMID: 39982959 PMC: 11882052. DOI: 10.1371/journal.pbio.3003034.


Are You Safe or Should I Go? How Perceived Trustworthiness and Probability of a Sexual Transmittable Infection Impact Activation of the Salience Network.

Wolber A, Schmidt S, Rockstroh B, Mier D eNeuro. 2025; 12(2).

PMID: 39929673 PMC: 11839089. DOI: 10.1523/ENEURO.0258-24.2024.


Simulating the impact of white matter connectivity on processing time scales using brain network models.

Triebkorn P, Jirsa V, Dominey P Commun Biol. 2025; 8(1):197.

PMID: 39920323 PMC: 11806016. DOI: 10.1038/s42003-025-07587-x.


Mechanical signatures in cancer metastasis.

Agrawal A, Javanmardi Y, Watson S, Serwinski B, Djordjevic B, Li W NPJ Biol Phys Mech. 2025; 2(1):3.

PMID: 39917412 PMC: 11794153. DOI: 10.1038/s44341-024-00007-x.


References
1.
Sardiello M . Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases. Ann N Y Acad Sci. 2016; 1371(1):3-14. PMC: 5032832. DOI: 10.1111/nyas.13131. View

2.
Zhao R, Jiang S, Zhang L, Yu Z . Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019; 44(1):3-15. PMC: 6559295. DOI: 10.3892/ijmm.2019.4188. View

3.
Rabinowitz J, White E . Autophagy and metabolism. Science. 2010; 330(6009):1344-8. PMC: 3010857. DOI: 10.1126/science.1193497. View

4.
Napolitano G, Esposito A, Choi H, Matarese M, Benedetti V, Di Malta C . mTOR-dependent phosphorylation controls TFEB nuclear export. Nat Commun. 2018; 9(1):3312. PMC: 6098152. DOI: 10.1038/s41467-018-05862-6. View

5.
Perry R, Samuel V, Petersen K, Shulman G . The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014; 510(7503):84-91. PMC: 4489847. DOI: 10.1038/nature13478. View