» Articles » PMID: 33397895

Pillar-beam Structures Prevent Layered Cathode Materials from Destructive Phase Transitions

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jan 5
PMID 33397895
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Energy storage with high energy density and low cost has been the subject of a decades-long pursuit. Sodium-ion batteries are well expected because they utilize abundant resources. However, the lack of competent cathodes with both large capacities and long cycle lives prevents the commercialization of sodium-ion batteries. Conventional cathodes with hexagonal-P2-type structures suffer from structural degradations when the sodium content falls below 33%, or when the integral anions participate in gas evolution reactions. Here, we show a "pillar-beam" structure for sodium-ion battery cathodes where a few inert potassium ions uphold the layer-structured framework, while the working sodium ions could diffuse freely. The thus-created unorthodox orthogonal-P2 K[NiMn]O cathode delivers a capacity of 194 mAh/g at 0.1 C, a rate capacity of 84% at 1 C, and an 86% capacity retention after 500 cycles at 1 C. The addition of the potassium ions boosts simultaneously the energy density and the cycle life.

Citing Articles

Understanding pillar chemistry in potassium-containing polyanion materials for long-lasting sodium-ion batteries.

Liu W, Cui W, Yi C, Xia J, Shang J, Hu W Nat Commun. 2024; 15(1):9889.

PMID: 39543206 PMC: 11564968. DOI: 10.1038/s41467-024-54317-8.


Strong Magnetic Exchange Interactions and Delocalized Mn-O States Enable High-Voltage Capacity in the Na-Ion Cathode P2-Na[MgMn]O.

Bassey E, Nguyen H, Insinna T, Lee J, Barra A, Cibin G Chem Mater. 2024; 36(19):9493-9515.

PMID: 39398379 PMC: 11467838. DOI: 10.1021/acs.chemmater.4c01320.


Revealing the Chemical and Structural Complexity of Electrochemical Ion Exchange in Layered Oxide Materials.

Mu L, Hou D, Foley E, Dai M, Zhang J, Jiang Z J Am Chem Soc. 2024; 146(39):26916-26925.

PMID: 39286863 PMC: 11457319. DOI: 10.1021/jacs.4c08089.


Transition metal oxides as a cathode for indispensable Na-ion batteries.

Kanwade A, Gupta S, Kankane A, Tiwari M, Srivastava A, Satrughna J RSC Adv. 2022; 12(36):23284-23310.

PMID: 36090429 PMC: 9382698. DOI: 10.1039/d2ra03601k.


Native lattice strain induced structural earthquake in sodium layered oxide cathodes.

Xu G, Liu X, Zhou X, Zhao C, Hwang I, Daali A Nat Commun. 2022; 13(1):436.

PMID: 35087034 PMC: 8795208. DOI: 10.1038/s41467-022-28052-x.


References
1.
Mortemard de Boisse B, Carlier D, Guignard M, Bourgeois L, Delmas C . P2-Na(x)Mn(1/2)Fe(1/2)O2 phase used as positive electrode in Na batteries: structural changes induced by the electrochemical (de)intercalation process. Inorg Chem. 2014; 53(20):11197-205. DOI: 10.1021/ic5017802. View

2.
Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R . P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater. 2012; 11(6):512-7. DOI: 10.1038/nmat3309. View

3.
Billaud J, Clement R, Armstrong A, Canales-Vazquez J, Rozier P, Grey C . β-NaMnO2: a high-performance cathode for sodium-ion batteries. J Am Chem Soc. 2014; 136(49):17243-8. DOI: 10.1021/ja509704t. View

4.
Guignard M, Didier C, Darriet J, Bordet P, Elkaim E, Delmas C . P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. Nat Mater. 2012; 12(1):74-80. DOI: 10.1038/nmat3478. View

5.
Li K, Zhang J, Lin D, Wang D, Li B, Lv W . Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat Commun. 2019; 10(1):725. PMC: 6374418. DOI: 10.1038/s41467-019-08506-5. View