» Articles » PMID: 33387533

Biochemical Timekeeping Via Reentrant Phase Transitions

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2021 Jan 2
PMID 33387533
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Appreciation for the role of liquid-liquid phase separation in the functional organization of cellular matter has exploded in recent years. More recently there has been a growing effort to understand the principles of heterotypic phase separation, the demixing of multiple proteins and nucleic acids into a single functional condensate. A phase transition is termed reentrant if it involves the transformation of a system from one state into a macroscopically similar or identical state via at least two phase transitions elicited by variation of a single parameter. Reentrant liquid-liquid phase separation can occur when the condensation of one species is tuned by another. Reentrant phase transitions have been modeled in vitro using protein and RNA mixtures. These biochemical studies reveal two features of reentrant phase separation that are likely important to functional cellular condensates: (1) the ability to generate condensates with layered functional topologies, and (2) the ability to generate condensates whose composition and duration are self-limiting to enable a form of biochemical timekeeping. We relate these biochemical studies to potential cellular examples and discuss how layered topologies and self-regulation may impact key biological processes.

Citing Articles

RNA-driven phase transitions in biomolecular condensates.

Wadsworth G, Srinivasan S, Lai L, Datta M, Gopalan V, Banerjee P Mol Cell. 2024; 84(19):3692-3705.

PMID: 39366355 PMC: 11604179. DOI: 10.1016/j.molcel.2024.09.005.


Reentrant condensation of a multicomponent cola/milk system induced by polyphosphate.

Furuki T, Nobeyama T, Suetaka S, Matsui R, Fukuoka T, Arai M Food Chem X. 2024; 21:101165.

PMID: 38328695 PMC: 10847600. DOI: 10.1016/j.fochx.2024.101165.


Targeting nucleic acid phase transitions as a mechanism of action for antimicrobial peptides.

Sneideris T, Erkamp N, Ausserwoger H, Saar K, Welsh T, Qian D Nat Commun. 2023; 14(1):7170.

PMID: 37935659 PMC: 10630377. DOI: 10.1038/s41467-023-42374-4.


Influence of HIV-1 Genomic RNA on the Formation of Gag Biomolecular Condensates.

Monette A, Niu M, Maldonado R, Chang J, Lambert G, Flanagan J J Mol Biol. 2023; 435(16):168190.

PMID: 37385580 PMC: 10838171. DOI: 10.1016/j.jmb.2023.168190.


Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins : Role of the Transcription Antiterminator M.

Visentin A, Demitroff N, Salgueiro M, Borkosky S, Uversky V, Camporeale G Viruses. 2023; 15(6).

PMID: 37376628 PMC: 10303025. DOI: 10.3390/v15061329.


References
1.
Boija A, Klein I, Sabari B, DallAgnese A, Coffey E, Zamudio A . Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell. 2018; 175(7):1842-1855.e16. PMC: 6295254. DOI: 10.1016/j.cell.2018.10.042. View

2.
Lu F, Portz B, Gilmour D . The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads. Mol Cell. 2019; 73(6):1232-1242.e4. PMC: 6440539. DOI: 10.1016/j.molcel.2019.01.008. View

3.
Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H . Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell. 2013; 155(5):1049-1060. PMC: 4010232. DOI: 10.1016/j.cell.2013.10.033. View

4.
Cai D, Feliciano D, Dong P, Flores E, Gruebele M, Porat-Shliom N . Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol. 2019; 21(12):1578-1589. PMC: 8259329. DOI: 10.1038/s41556-019-0433-z. View

5.
McGurk L, Gomes E, Guo L, Shorter J, Bonini N . Poly(ADP-ribose) Engages the TDP-43 Nuclear-Localization Sequence to Regulate Granulo-Filamentous Aggregation. Biochemistry. 2018; 57(51):6923-6926. PMC: 6752045. DOI: 10.1021/acs.biochem.8b00910. View