» Articles » PMID: 33386092

The Good, the Bad, and the Ugly in Chemical and Biological Data for Machine Learning

Overview
Publisher Elsevier
Date 2021 Jan 2
PMID 33386092
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Machine learning and artificial intelligence (ML/AI) have become important research tools in molecular medicine and chemistry. Their rise and recent success in drug discovery promises a rapid progression of development pipelines while reshaping how fundamental and clinical research is conducted. By taking advantage of the ever-growing wealth of publicly available and proprietary data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses. Hitherto unknown data patterns may guide and prioritize experiments, and augment expert intuition. Therefore, data is a key component in the model building workflow. Herein, I aim to discuss types of chemical and biological data according to their quality and reemphasize general recommendations for their use in ML/AI.

Citing Articles

Navigating the archaeal frontier: insights and projections from bioinformatic pipelines.

Karavaeva V, Sousa F Front Microbiol. 2024; 15:1433224.

PMID: 39380680 PMC: 11459464. DOI: 10.3389/fmicb.2024.1433224.


Bridging Machine Learning and Thermodynamics for Accurate p Prediction.

Luo W, Zhou G, Zhu Z, Yuan Y, Ke G, Wei Z JACS Au. 2024; 4(9):3451-3465.

PMID: 39328749 PMC: 11423309. DOI: 10.1021/jacsau.4c00271.


Potential anti-obesity effect of saponin metabolites from adzuki beans: A computational approach.

Moussa A, Alanzi A, Luo J, Chung S, Xu B Food Sci Nutr. 2024; 12(5):3612-3627.

PMID: 38726452 PMC: 11077217. DOI: 10.1002/fsn3.4032.


Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction.

Baran K, Kloskowski A J Phys Chem B. 2023; 127(49):10542-10555.

PMID: 38015981 PMC: 10726349. DOI: 10.1021/acs.jpcb.3c05521.


Artificial Intelligence's Impact on Drug Discovery and Development From Bench to Bedside.

Vidhya K, Sultana A, M N, Rangareddy H Cureus. 2023; 15(10):e47486.

PMID: 37881323 PMC: 10597591. DOI: 10.7759/cureus.47486.


References
1.
Ganesh A, Donders E, Shoichet B, Shoichet M . Colloidal aggregation: from screening nuisance to formulation nuance. Nano Today. 2018; 19:188-200. PMC: 6150470. DOI: 10.1016/j.nantod.2018.02.011. View

2.
Fourches D, Muratov E, Tropsha A . Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010; 50(7):1189-204. PMC: 2989419. DOI: 10.1021/ci100176x. View

3.
Nielsen M, Ahneman D, Riera O, Doyle A . Deoxyfluorination with Sulfonyl Fluorides: Navigating Reaction Space with Machine Learning. J Am Chem Soc. 2018; 140(15):5004-5008. DOI: 10.1021/jacs.8b01523. View

4.
Chuang K, Keiser M . Comment on "Predicting reaction performance in C-N cross-coupling using machine learning". Science. 2018; 362(6416). DOI: 10.1126/science.aat8603. View

5.
Gao H, Struble T, Coley C, Wang Y, Green W, Jensen K . Using Machine Learning To Predict Suitable Conditions for Organic Reactions. ACS Cent Sci. 2018; 4(11):1465-1476. PMC: 6276053. DOI: 10.1021/acscentsci.8b00357. View