» Articles » PMID: 33376791

Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics

Overview
Journal ACS Cent Sci
Specialty Chemistry
Date 2020 Dec 30
PMID 33376791
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

While eukaryotic cells have a myriad of membrane-bound organelles enabling the isolation of different chemical environments, prokaryotic cells lack these defined reaction vessels. Biomolecular condensates-organelles that lack a membrane-provide a strategy for cellular organization without a physical barrier while allowing for the dynamic, responsive organization of the cell. It is well established that intrinsically disordered protein domains drive condensate formation via liquid-liquid phase separation; however, the role of globular protein domains on intracellular phase separation remains poorly understood. We hypothesized that the overall charge of globular proteins would dictate the formation and concentration of condensates and systematically probed this hypothesis with supercharged proteins and nucleic acids in . Within this study, we demonstrated that condensates form via electrostatic interactions between engineered proteins and RNA and that these condensates are dynamic and only enrich specific nucleic acid and protein components. Herein, we propose a simple model for the phase separation based on protein charge that can be used to predict intracellular condensate formation. With these guidelines, we have paved the way to designer functional synthetic membraneless organelles with tunable control over globular protein function.

Citing Articles

Molecular determinants of condensate composition.

Holehouse A, Alberti S Mol Cell. 2025; 85(2):290-308.

PMID: 39824169 PMC: 11750178. DOI: 10.1016/j.molcel.2024.12.021.


Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Wu T, Chen X, Fei Y, Huang G, Deng Y, Wang Y Nat Chem Biol. 2025; .

PMID: 39779903 DOI: 10.1038/s41589-024-01819-7.


Memory effects of transcription regulator-DNA interactions in bacteria.

Jung W, Chen T, Santiago A, Chen P Proc Natl Acad Sci U S A. 2024; 121(41):e2407647121.

PMID: 39361642 PMC: 11474097. DOI: 10.1073/pnas.2407647121.


YAP charge patterning mediates signal integration through transcriptional co-condensates.

Meyer K, Yserentant K, Cheloor-Kovilakam R, Ruff K, Chung C, Shu X bioRxiv. 2024; .

PMID: 39149273 PMC: 11326239. DOI: 10.1101/2024.08.10.607443.


Single-Molecule Diffusivity Quantification Unveils Ubiquitous Net Charge-Driven Protein-Protein Interaction.

Choi A, Xu K J Am Chem Soc. 2024; 146(15):10973-10978.

PMID: 38576203 PMC: 11023747. DOI: 10.1021/jacs.4c02475.


References
1.
Elowitz M, Surette M, Wolf P, Stock J, Leibler S . Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol. 1998; 181(1):197-203. PMC: 103549. DOI: 10.1128/JB.181.1.197-203.1999. View

2.
Larson A, Elnatan D, Keenen M, Trnka M, Johnston J, Burlingame A . Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature. 2017; 547(7662):236-240. PMC: 5606208. DOI: 10.1038/nature22822. View

3.
Berry J, Weber S, Vaidya N, Haataja M, Brangwynne C . RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A. 2015; 112(38):E5237-45. PMC: 4586886. DOI: 10.1073/pnas.1509317112. View

4.
OVERBEEK J, VOORN M . Phase separation in polyelectrolyte solutions; theory of complex coacervation. J Cell Physiol Suppl. 1957; 49(Suppl 1):7-22; discussion, 22-6. View

5.
Pak C, Kosno M, Holehouse A, Padrick S, Mittal A, Ali R . Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Mol Cell. 2016; 63(1):72-85. PMC: 4973464. DOI: 10.1016/j.molcel.2016.05.042. View