» Articles » PMID: 33373369

Differential Effects of Novel Kappa Opioid Receptor Antagonists on Dopamine Neurons Using Acute Brain Slice Electrophysiology

Overview
Journal PLoS One
Date 2020 Dec 29
PMID 33373369
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Activation of the kappa opioid receptor (KOR) contributes to the aversive properties of stress, and modulates key neuronal circuits underlying many neurobehavioral disorders. KOR agonists directly inhibit ventral tegmental area (VTA) dopaminergic neurons, contributing to aversive responses (Margolis et al. 2003, 2006); therefore, selective KOR antagonists represent a novel therapeutic approach to restore circuit function. We used whole cell electrophysiology in acute rat midbrain slices to evaluate pharmacological properties of four novel KOR antagonists: BTRX-335140, BTRX-395750, PF-04455242, and JNJ-67953964. Each compound concentration-dependently reduced the outward current induced by the KOR selective agonist U-69,593. BTRX-335140 and BTRX-395750 fully blocked U-69,593 currents (IC50 = 1.2 ± 0.9 and 1.2 ± 1.3 nM, respectively). JNJ-67953964 showed an IC50 of 3.0 ± 4.6 nM. PF-04455242 exhibited partial antagonist activity asymptoting at 55% blockade (IC50 = 6.7 ± 15.1 nM). In 3/8 of neurons, 1 μM PF-04455242 generated an outward current independent of KOR activation. BTRX-335140 (10 nM) did not affect responses to saturating concentrations of the mu opioid receptor (MOR) agonist DAMGO or the delta opioid receptor (DOR) agonist DPDPE, while JNJ-67953964 (10 nM) partially blocked DAMGO and DPDPE responses. Importantly, BTRX-335140 (10 nM) rapidly washed out with complete recovery of U-69,593 responses within 10 min. Collectively, we show electrophysiological evidence of key differences amongst KOR antagonists that could impact their therapeutic potential and have not been observed using recombinant systems. The results of this study demonstrate the value of characterizing compounds in native neuronal tissue and within circuits implicated in the neurobehavioral disorders of interest.

Citing Articles

Pharmacologic hyperreactivity of kappa opioid receptors in periaqueductal gray matter during alcohol withdrawal syndrome in rats.

Vazquez-Leon P, Miranda-Paez A, Sanchez-Castillo H, Marichal-Cancino B Pharmacol Rep. 2023; 75(5):1299-1308.

PMID: 37658980 DOI: 10.1007/s43440-023-00522-z.


Molecular and Epigenetic Aspects of Opioid Receptors in Drug Addiction and Pain Management in Sport.

Mazzeo F, Meccariello R, Guatteo E Int J Mol Sci. 2023; 24(9).

PMID: 37175536 PMC: 10178540. DOI: 10.3390/ijms24097831.


Aticaprant (Clinically Developed Kappa-Opioid Receptor Antagonist) Combined With Naltrexone Prevents Alcohol "Relapse" Drinking.

Zhou Y, Zhou D, Kreek M J Pharm Pharmacol (Los Angel). 2022; 9(1).

PMID: 35832748 PMC: 9275124. DOI: 10.13188/2327-204x.1000032.


Pharmacological Treatments for Anhedonia.

Klein M, Buxbaum Grice A, Sheth S, Go M, Murrough J Curr Top Behav Neurosci. 2022; 58:467-489.

PMID: 35507281 DOI: 10.1007/7854_2022_357.


Rapid-Onset Anti-Stress Effects of a Kappa-Opioid Receptor Antagonist, LY2795050, Against Immobility in an Open Space Swim Paradigm in Male and Female Mice.

Baynard C, Prisinzano T, Butelman E Front Pharmacol. 2021; 12:775317.

PMID: 34880762 PMC: 8645979. DOI: 10.3389/fphar.2021.775317.


References
1.
Margolis E, Karkhanis A . Dopaminergic cellular and circuit contributions to kappa opioid receptor mediated aversion. Neurochem Int. 2019; 129:104504. PMC: 6702044. DOI: 10.1016/j.neuint.2019.104504. View

2.
Urbano M, Guerrero M, Rosen H, Roberts E . Antagonists of the kappa opioid receptor. Bioorg Med Chem Lett. 2014; 24(9):2021-32. DOI: 10.1016/j.bmcl.2014.03.040. View

3.
Walsh S, Strain E, Abreu M, Bigelow G . Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl). 2001; 157(2):151-62. DOI: 10.1007/s002130100788. View

4.
Kallupi M, Wee S, Edwards S, Whitfield Jr T, Oleata C, Luu G . Kappa opioid receptor-mediated dysregulation of gamma-aminobutyric acidergic transmission in the central amygdala in cocaine addiction. Biol Psychiatry. 2013; 74(7):520-8. PMC: 3773286. DOI: 10.1016/j.biopsych.2013.04.028. View

5.
Tejeda H, Bonci A . Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Res. 2018; 1713:91-101. DOI: 10.1016/j.brainres.2018.09.023. View