New Applications Related to Covid-19
Overview
Authors
Affiliations
Analysis of mathematical models projected for COVID-19 presents in many valuable outputs. We analyze a model of differential equation related to Covid-19 in this paper. We use fractal-fractional derivatives in the proposed model. We analyze the equilibria of the model. We discuss the stability analysis in details. We apply very effective method to obtain the numerical results. We demonstrate our results by the numerical simulations.
General two-parameter distribution: Statistical properties, estimation, and application on COVID-19.
Gemeay A, Halim Z, El-Raouf M, Hussam E, Abdulrahman A, Mashaqbah N PLoS One. 2023; 18(2):e0281474.
PMID: 36753497 PMC: 9907847. DOI: 10.1371/journal.pone.0281474.
Modeling the impact of the vaccine on the COVID-19 epidemic transmission via fractional derivative.
Arshad S, Khalid S, Javed S, Amin N, Nawaz F Eur Phys J Plus. 2022; 137(7):802.
PMID: 35845824 PMC: 9272881. DOI: 10.1140/epjp/s13360-022-02988-x.
Application of fractional optimal control theory for the mitigating of novel coronavirus in Algeria.
El Hadj Moussa Y, Boudaoui A, Ullah S, Muzammil K, Riaz M Results Phys. 2022; 39:105651.
PMID: 35668848 PMC: 9161688. DOI: 10.1016/j.rinp.2022.105651.
Fujiwara N, Onaga T, Wada T, Takeuchi S, Seto J, Nakaya T BMC Infect Dis. 2022; 22(1):512.
PMID: 35650534 PMC: 9157046. DOI: 10.1186/s12879-022-07403-5.
Ozkose F, Yavuz M, Senel M, Habbireeh R Chaos Solitons Fractals. 2022; 157:111954.
PMID: 35250194 PMC: 8882414. DOI: 10.1016/j.chaos.2022.111954.