» Articles » PMID: 33318168

Mirror-image Antiparallel β-sheets Organize Water Molecules into Superstructures of Opposite Chirality

Overview
Specialty Science
Date 2020 Dec 15
PMID 33318168
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Biomolecular hydration is fundamental to biological functions. Using phase-resolved chiral sum-frequency generation spectroscopy (SFG), we probe molecular architectures and interactions of water molecules around a self-assembling antiparallel β-sheet protein. We find that the phase of the chiroptical response from the O-H stretching vibrational modes of water flips with the absolute chirality of the (l-) or (d-) antiparallel β-sheet. Therefore, we can conclude that the (d-) antiparallel β-sheet organizes water solvent into a chiral supermolecular structure with opposite handedness relative to that of the (l-) antiparallel β-sheet. We use molecular dynamics to characterize the chiral water superstructure at atomic resolution. The results show that the macroscopic chirality of antiparallel β-sheets breaks the symmetry of assemblies of surrounding water molecules. We also calculate the chiral SFG response of water surrounding (l-) and (d-) LKβ to confirm the presence of chiral water structures. Our results offer a different perspective as well as introduce experimental and computational methodologies for elucidating hydration of biomacromolecules. The findings imply potentially important but largely unexplored roles of water solvent in chiral selectivity of biomolecular interactions and the molecular origins of homochirality in the biological world.

Citing Articles

Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures.

Perets E, Konstantinovsky D, Santiago T, Videla P, Tremblay M, Velarde L J Chem Phys. 2024; 161(9).

PMID: 39230381 PMC: 11377083. DOI: 10.1063/5.0220479.


Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water.

Konstantinovsky D, Santiago T, Tremblay M, Simpson G, Hammes-Schiffer S, Yan E J Chem Phys. 2024; 160(5).

PMID: 38341693 PMC: 10846909. DOI: 10.1063/5.0181718.


Characterizing Interfaces by Voronoi Tessellation.

Konstantinovsky D, Yan E, Hammes-Schiffer S J Phys Chem Lett. 2023; 14(23):5260-5266.

PMID: 37265175 PMC: 10344600. DOI: 10.1021/acs.jpclett.3c01159.


Photoactive Yellow Protein Adsorption at Hydrated Polyethyleneimine and Poly-l-Glutamic Acid Interfaces.

Krekic S, Mero M, Kuhl M, Balasubramanian K, Der A, Heiner Z Molecules. 2023; 28(10).

PMID: 37241818 PMC: 10223613. DOI: 10.3390/molecules28104077.


Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions.

Yan E, Perets E, Konstantinovsky D, Hammes-Schiffer S Acc Chem Res. 2023; 56(12):1494-1504.

PMID: 37163574 PMC: 10344471. DOI: 10.1021/acs.accounts.3c00088.


References
1.
Wang Z, Fu L, Yan E . C-H stretch for probing kinetics of self-assembly into macromolecular chiral structures at interfaces by chiral sum frequency generation spectroscopy. Langmuir. 2013; 29(12):4077-83. DOI: 10.1021/la304954h. View

2.
Donovan M, Lutz H, Yimer Y, Pfaendtner J, Bonn M, Weidner T . LK peptide side chain dynamics at interfaces are independent of secondary structure. Phys Chem Chem Phys. 2017; 19(42):28507-28511. DOI: 10.1039/c7cp05897g. View

3.
Fu L, Chen S, Wang H . Validation of Spectra and Phase in Sub-1 cm(-1) Resolution Sum-Frequency Generation Vibrational Spectroscopy through Internal Heterodyne Phase-Resolved Measurement. J Phys Chem B. 2015; 120(8):1579-89. DOI: 10.1021/acs.jpcb.5b07780. View

4.
Hosseinpour S, Roeters S, Bonn M, Peukert W, Woutersen S, Weidner T . Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev. 2020; 120(7):3420-3465. DOI: 10.1021/acs.chemrev.9b00410. View

5.
Ketchem R, Hu W, Cross T . High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993; 261(5127):1457-60. DOI: 10.1126/science.7690158. View