» Articles » PMID: 33289333

Non-recombinogenic Roles for Rad52 in Translesion Synthesis During DNA Damage Tolerance

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2020 Dec 8
PMID 33289333
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error-prone, HR uses the sister chromatid and is mostly error-free. We report that the HR protein Rad52-but not Rad51 and Rad57-acts in concert with the TLS machinery (Rad6/Rad18-mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light-induced ssDNA gaps through a non-recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS- and UV-induced HR); accordingly, Rad52 is required for efficient DNA damage-induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage-induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57-dependent and -independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.

Citing Articles

The Shu complex interacts with the replicative helicase to prevent mutations and aberrant recombination.

Fagunloye A, De Magis A, Little J, Contreras I, Dorwart T, Bonilla B EMBO J. 2025; 44(5):1512-1539.

PMID: 39838174 PMC: 11876325. DOI: 10.1038/s44318-025-00365-9.


REV1 coordinates a multi-faceted tolerance response to DNA alkylation damage and prevents chromosome shattering in Drosophila melanogaster.

Khodaverdian V, Sano T, Maggs L, Tomarchio G, Dias A, Tran M PLoS Genet. 2024; 20(7):e1011181.

PMID: 39074150 PMC: 11309488. DOI: 10.1371/journal.pgen.1011181.


USP9X-mediated REV1 deubiquitination promotes lung cancer radioresistance via the action of REV1 as a Rad18 molecular scaffold for cystathionine γ-lyase.

Chen Y, Feng X, Wu Z, Yang Y, Rao X, Meng R J Biomed Sci. 2024; 31(1):55.

PMID: 38802791 PMC: 11131313. DOI: 10.1186/s12929-024-01044-3.


Physical interactions between specifically regulated subpopulations of the MCM and RNR complexes prevent genetic instability.

Yanez-Vilches A, Romero A, Barrientos-Moreno M, Cruz E, Gonzalez-Prieto R, Sharma S PLoS Genet. 2024; 20(5):e1011148.

PMID: 38776358 PMC: 11149843. DOI: 10.1371/journal.pgen.1011148.


APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability.

Kawale A, Ran X, Patel P, Saxena S, Lawrence M, Zou L Sci Adv. 2024; 10(3):eadk2771.

PMID: 38241374 PMC: 10798555. DOI: 10.1126/sciadv.adk2771.


References
1.
Armstrong J, Chadee D, Kunz B . Roles for the yeast RAD18 and RAD52 DNA repair genes in UV mutagenesis. Mutat Res. 1994; 315(3):281-93. DOI: 10.1016/0921-8777(94)90039-6. View

2.
Schiestl R, Prakash S, Prakash L . The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics. 1990; 124(4):817-31. PMC: 1203974. DOI: 10.1093/genetics/124.4.817. View

3.
Kunz B, Gabriel M, Kang X, Kohalmi S, Terrick K . DNA repair modifies the site and strand specificity of ethyl methanesulfonate mutagenesis in yeast. Mutagenesis. 1992; 7(6):461-9. DOI: 10.1093/mutage/7.6.461. View

4.
Garcia-Rodriguez N, Morawska M, Wong R, Daigaku Y, Ulrich H . Spatial separation between replisome- and template-induced replication stress signaling. EMBO J. 2018; 37(9). PMC: 5920239. DOI: 10.15252/embj.201798369. View

5.
Prado F, Aguilera A . Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Genetics. 1995; 139(1):109-23. PMC: 1206311. DOI: 10.1093/genetics/139.1.109. View