» Articles » PMID: 33288755

Establishment of a Morphological Atlas of the Caenorhabditis Elegans Embryo Using Deep-learning-based 4D Segmentation

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Dec 8
PMID 33288755
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

The invariant development and transparent body of the nematode Caenorhabditis elegans enables complete delineation of cell lineages throughout development. Despite extensive studies of cell division, cell migration and cell fate differentiation, cell morphology during development has not yet been systematically characterized in any metazoan, including C. elegans. This knowledge gap substantially hampers many studies in both developmental and cell biology. Here we report an automatic pipeline, CShaper, which combines automated segmentation of fluorescently labeled membranes with automated cell lineage tracing. We apply this pipeline to quantify morphological parameters of densely packed cells in 17 developing C. elegans embryos. Consequently, we generate a time-lapse 3D atlas of cell morphology for the C. elegans embryo from the 4- to 350-cell stages, including cell shape, volume, surface area, migration, nucleus position and cell-cell contact with resolved cell identities. We anticipate that CShaper and the morphological atlas will stimulate and enhance further studies in the fields of developmental biology, cell biology and biomechanics.

Citing Articles

Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy.

Guo M, Wu Y, Hobson C, Su Y, Qian S, Krueger E Nat Commun. 2025; 16(1):313.

PMID: 39747824 PMC: 11697233. DOI: 10.1038/s41467-024-55267-x.


Deep learning-based enhancement of fluorescence labeling for accurate cell lineage tracing during embryogenesis.

Li Z, Xie D, Ma Y, Zhao C, You S, Yan H Bioinformatics. 2024; 40(11).

PMID: 39418183 PMC: 11549013. DOI: 10.1093/bioinformatics/btae626.


Computational Methods for Image Analysis in Craniofacial Development and Disease.

James E, Caetano A, Sharpe P J Dent Res. 2024; 103(13):1340-1348.

PMID: 39272216 PMC: 11633063. DOI: 10.1177/00220345241265048.


Automated cell lineage reconstruction using label-free 4D microscopy.

Waliman M, Johnson R, Natesan G, Peinado N, Tan S, Santella A Genetics. 2024; 228(2.

PMID: 39139100 PMC: 11457935. DOI: 10.1093/genetics/iyae135.


Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism.

Beckett L, Williams P, Toh L, Hessel V, Gerstweiler L, Fisk I NPJ Microgravity. 2024; 10(1):79.

PMID: 39060303 PMC: 11282318. DOI: 10.1038/s41526-024-00418-z.


References
1.
Sugioka K, Bowerman B . Combinatorial Contact Cues Specify Cell Division Orientation by Directing Cortical Myosin Flows. Dev Cell. 2018; 46(3):257-270.e5. PMC: 7695482. DOI: 10.1016/j.devcel.2018.06.020. View

2.
Li F, Zhou X, Zhao H, Wong S . Cell segmentation using front vector flow guided active contours. Med Image Comput Comput Assist Interv. 2010; 12(Pt 2):609-16. PMC: 2896022. DOI: 10.1007/978-3-642-04271-3_74. View

3.
Hench J, Henriksson J, Luppert M, Burglin T . Spatio-temporal reference model of Caenorhabditis elegans embryogenesis with cell contact maps. Dev Biol. 2009; 333(1):1-13. DOI: 10.1016/j.ydbio.2009.06.014. View

4.
Christiansen E, Yang S, Ando D, Javaherian A, Skibinski G, Lipnick S . In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell. 2018; 173(3):792-803.e19. PMC: 6309178. DOI: 10.1016/j.cell.2018.03.040. View

5.
Xu M, Wu Y, Shroff H, Wu M, Mani M . A scheme for 3-dimensional morphological reconstruction and force inference in the early C. elegans embryo. PLoS One. 2018; 13(7):e0199151. PMC: 6038995. DOI: 10.1371/journal.pone.0199151. View