» Articles » PMID: 33274379

Exploring the Niche of Rickettsia Montanensis (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae), Using Multiple Species Distribution Model Approaches

Overview
Journal J Med Entomol
Specialty Biology
Date 2020 Dec 4
PMID 33274379
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae), is a vector for several human disease-causing pathogens such as tularemia, Rocky Mountain spotted fever, and the understudied spotted fever group rickettsiae (SFGR) infection caused by Rickettsia montanensis. It is important for public health planning and intervention to understand the distribution of this tick and pathogen encounter risk. Risk is often described in terms of vector distribution, but greatest risk may be concentrated where more vectors are positive for a given pathogen. When assessing species distributions, the choice of modeling framework and spatial layers used to make predictions are important. We first updated the modeled distribution of D. variabilis and R. montanensis using maximum entropy (MaxEnt), refining bioclimatic data inputs, and including soil variables. We then compared geospatial predictions from five species distribution modeling frameworks. In contrast to previous work, we additionally assessed whether the R. montanensis positive D. variabilis distribution is nested within a larger overall D. variabilis distribution, representing a fitness cost hypothesis. We found that 1) adding soil layers improved the accuracy of the MaxEnt model; 2) the predicted 'infected niche' was smaller than the overall predicted niche across all models; and 3) each model predicted different sizes of suitable niche, at different levels of probability. Importantly, the models were not directly comparable in output style, which could create confusion in interpretation when developing planning tools. The random forest (RF) model had the best measured validity and fit, suggesting it may be most appropriate to these data.

Citing Articles

Diversity of questing ticks and prevalence of tick-associated pathogens in Khao Kheow-Khao Chomphu Wildlife Sanctuary, Chon Buri, Thailand.

Wechtaisong W, Sri-In C, Thongmeesee K, Riana E, Bui T, Bartholomay L Curr Res Parasitol Vector Borne Dis. 2024; 6:100220.

PMID: 39524488 PMC: 11550210. DOI: 10.1016/j.crpvbd.2024.100220.


Estimating the distribution of , a potential key host in expanding rickettsial tick-borne disease risk.

Lippi C, Canfield S, Espada C, Gaff H, Ryan S Ecosphere. 2024; 14(3).

PMID: 39211416 PMC: 11359945. DOI: 10.1002/ecs2.4445.


Predicting the distribution of Ixodes ricinus and Dermacentor reticulatus in Europe: a comparison of climate niche modelling approaches.

Noll M, Wall R, Makepeace B, Newbury H, Adaszek L, Bodker R Parasit Vectors. 2023; 16(1):384.

PMID: 37880680 PMC: 10601327. DOI: 10.1186/s13071-023-05959-y.


Ecological Niche Modelling Approaches: Challenges and Applications in Vector-Borne Diseases.

Cuervo P, Artigas P, Lorenzo-Morales J, Bargues M, Mas-Coma S Trop Med Infect Dis. 2023; 8(4).

PMID: 37104313 PMC: 10141209. DOI: 10.3390/tropicalmed8040187.


Newer Surveillance Data Extends our Understanding of the Niche of (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae) in the United States.

Lippi C, Gaff H, Nadolny R, Ryan S Vector Borne Zoonotic Dis. 2023; 23(6):316-323.

PMID: 37083463 PMC: 10278010. DOI: 10.1089/vbz.2023.0002.


References
1.
de Marco Junior P, Nobrega C . Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS One. 2018; 13(9):e0202403. PMC: 6133275. DOI: 10.1371/journal.pone.0202403. View

2.
Lippi C, Stewart-Ibarra A, Loor M, Zambrano J, Lopez N, Blackburn J . Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control. PLoS Negl Trop Dis. 2019; 13(4):e0007322. PMC: 6488096. DOI: 10.1371/journal.pntd.0007322. View

3.
Gurgel-Goncalves R, Galvao C, Costa J, Peterson A . Geographic distribution of chagas disease vectors in Brazil based on ecological niche modeling. J Trop Med. 2012; 2012:705326. PMC: 3317230. DOI: 10.1155/2012/705326. View

4.
Boorgula G, Peterson A, Foley D, Ganta R, Raghavan R . Assessing the current and future potential geographic distribution of the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) in North America. PLoS One. 2020; 15(8):e0237191. PMC: 7416948. DOI: 10.1371/journal.pone.0237191. View

5.
McQuiston J, Zemtsova G, Perniciaro J, Hutson M, Singleton J, Nicholson W . Afebrile spotted fever group Rickettsia infection after a bite from a Dermacentor variabilis tick infected with Rickettsia montanensis. Vector Borne Zoonotic Dis. 2012; 12(12):1059-61. PMC: 4699432. DOI: 10.1089/vbz.2012.1078. View