» Articles » PMID: 33265347

Information Geometry for Radar Target Detection with Total Jensen-Bregman Divergence

Overview
Journal Entropy (Basel)
Publisher MDPI
Date 2020 Dec 3
PMID 33265347
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

This paper proposes a radar target detection algorithm based on information geometry. In particular, the correlation of sample data is modeled as a Hermitian positive-definite (HPD) matrix. Moreover, a class of total Jensen-Bregman divergences, including the total Jensen square loss, the total Jensen log-determinant divergence, and the total Jensen von Neumann divergence, are proposed to be used as the distance-like function on the space of HPD matrices. On basis of these divergences, definitions of their corresponding median matrices are given. Finally, a decision rule of target detection is made by comparing the total Jensen-Bregman divergence between the median of reference cells and the matrix of cell under test with a given threshold. The performance analysis on both simulated and real radar data confirm the superiority of the proposed detection method over its conventional counterparts and existing ones.

Citing Articles

Matrix Information Geometry for Spectral-Based SPD Matrix Signal Detection with Dimensionality Reduction.

Feng S, Hua X, Zhu X Entropy (Basel). 2020; 22(9).

PMID: 33286683 PMC: 7597166. DOI: 10.3390/e22090914.


Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network.

Wang J, Hua X, Zeng X Entropy (Basel). 2020; 22(5).

PMID: 33286357 PMC: 7517104. DOI: 10.3390/e22050585.


Isometric Signal Processing under Information Geometric Framework.

Wu H, Cheng Y, Wang H Entropy (Basel). 2020; 21(4).

PMID: 33267047 PMC: 7514816. DOI: 10.3390/e21040332.


Vector Bundle Model of Complex Electromagnetic Space and Change Detection.

Wu H, Cheng Y, Hua X, Wang H Entropy (Basel). 2020; 21(1).

PMID: 33266726 PMC: 7514112. DOI: 10.3390/e21010010.

References
1.
Charfi M, Chebbi Z, Moakher M, Vemuri B . BHATTACHARYYA MEDIAN OF SYMMETRIC POSITIVE-DEFINITE MATRICES AND APPLICATION TO THE DENOISING OF DIFFUSION-TENSOR FIELDS. Proc IEEE Int Symp Biomed Imaging. 2014; :1227-1230. PMC: 3967959. DOI: 10.1109/ISBI.2013.6556702. View

2.
Liu M, Vemuri B, Amari S, Nielsen F . Total Bregman Divergence and its Applications to Shape Retrieval. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013; :3463-3468. PMC: 3782752. DOI: 10.1109/CVPR.2010.5539979. View

3.
Yuille A, Rangarajan A . The concave-convex procedure. Neural Comput. 2003; 15(4):915-36. DOI: 10.1162/08997660360581958. View

4.
Liu M, Vemuri B, Amari S, Nielsen F . Shape retrieval using hierarchical total Bregman soft clustering. IEEE Trans Pattern Anal Mach Intell. 2012; 34(12):2407-19. PMC: 3377859. DOI: 10.1109/TPAMI.2012.44. View

5.
Vemuri B, Liu M, Amari S, Nielsen F . Total Bregman divergence and its applications to DTI analysis. IEEE Trans Med Imaging. 2010; 30(2):475-83. PMC: 3091005. DOI: 10.1109/TMI.2010.2086464. View