» Articles » PMID: 33260740

Adaptation of the CCA-Adding Enzyme to Miniaturized Armless TRNA Substrates

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2020 Dec 2
PMID 33260740
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

The mitochondrial genome of the nematode encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that-when inserted into the human enzyme-confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3'-end of the tRNA primer in the catalytic core, dramatically increases the enzyme's substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.

Citing Articles

Two complementing selection systems based on CCA-trimming exonucleases as a tool to monitor, select and evaluate enzymatic features of tRNA nucleotidyltransferases.

Wellner K, Gnauck J, Bernier D, Bernhart S, Betat H, Morl M RNA Biol. 2025; 22(1):1-14.

PMID: 39831457 PMC: 11784652. DOI: 10.1080/15476286.2025.2453963.


Aberrant Mitochondrial tRNA Genes Appear Frequently in Animal Evolution.

Ozerova I, Fallmann J, Morl M, Bernt M, Prohaska S, Stadler P Genome Biol Evol. 2024; 16(11).

PMID: 39437314 PMC: 11571959. DOI: 10.1093/gbe/evae232.


Substrate Affinity Versus Catalytic Efficiency: Ancestral Sequence Reconstruction of tRNA Nucleotidyltransferases Solves an Enzyme Puzzle.

Hager M, Pohler M, Reinhardt F, Wellner K, Hubner J, Betat H Mol Biol Evol. 2022; 39(12).

PMID: 36409584 PMC: 9728577. DOI: 10.1093/molbev/msac250.


CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium .

de Wijn R, Rollet K, Ernst F, Wellner K, Betat H, Morl M Comput Struct Biotechnol J. 2021; 19:5845-5855.

PMID: 34765099 PMC: 8563995. DOI: 10.1016/j.csbj.2021.10.018.

References
1.
DSouza A, Minczuk M . Mitochondrial transcription and translation: overview. Essays Biochem. 2018; 62(3):309-320. PMC: 6056719. DOI: 10.1042/EBC20170102. View

2.
Hou Y . CCA addition to tRNA: implications for tRNA quality control. IUBMB Life. 2010; 62(4):251-60. PMC: 2848691. DOI: 10.1002/iub.301. View

3.
Okabe M, Tomita K, Ishitani R, Ishii R, Takeuchi N, Arisaka F . Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure. EMBO J. 2003; 22(21):5918-27. PMC: 275420. DOI: 10.1093/emboj/cdg563. View

4.
Betat H, Rammelt C, Morl M . tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci. 2010; 67(9):1447-63. PMC: 11115931. DOI: 10.1007/s00018-010-0271-4. View

5.
Webb B, Sali A . Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 2016; 54:5.6.1-5.6.37. PMC: 5031415. DOI: 10.1002/cpbi.3. View