» Articles » PMID: 33247204

RAS-protein Activation but Not Mutation Status is an Outcome Predictor and Unifying Therapeutic Target for High-risk Acute Lymphoblastic Leukemia

Overview
Journal Oncogene
Date 2020 Nov 28
PMID 33247204
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Leukemias are routinely sub-typed for risk/outcome prediction and therapy choice using acquired mutations and chromosomal rearrangements. Down syndrome acute lymphoblastic leukemia (DS-ALL) is characterized by high frequency of CRLF2-rearrangements, JAK2-mutations, or RAS-pathway mutations. Intriguingly, JAK2 and RAS-mutations are mutually exclusive in leukemic sub-clones, causing dichotomy in therapeutic target choices. We prove in a cell model that elevated CRLF2 in combination with constitutionally active JAK2 is sufficient to activate wtRAS. On primary clinical DS-ALL samples, we show that wtRAS-activation is an obligatory consequence of mutated/hyperphosphorylated JAK2. We further prove that CRLF2-ligand TSLP boosts the direct binding of active PTPN11 to wtRAS, providing the molecular mechanism for the wtRAS activation. Pre-inhibition of RAS or PTPN11, but not of PI3K or JAK-signaling, prevented TSLP-induced RAS-GTP boost. Cytotoxicity assays on primary clinical DS-ALL samples demonstrated that, regardless of mutation status, high-risk leukemic cells could only be killed using RAS-inhibitor or PTPN11-inhibitor, but not PI3K/JAK-inhibitors, suggesting a unified treatment target for up to 80% of DS-ALL. Importantly, protein activities-based principal-component-analysis multivariate clusters analyzed for independent outcome prediction using Cox proportional-hazards model showed that protein-activity (but not mutation-status) was independently predictive of outcome, demanding a paradigm-shift in patient-stratification strategy for precision therapy in high-risk ALL.

Citing Articles

A transgenic mouse model of Down syndrome acute lymphoblastic leukemia identifies targetable vulnerabilities.

Junco J, Rochette M, Alozie M, Rashid R, Terrell M, Zorman B Haematologica. 2024; 109(12):4083-4088.

PMID: 39049603 PMC: 11609804. DOI: 10.3324/haematol.2023.284761.


Hematologic Neoplasms Associated with Down Syndrome: Cellular and Molecular Heterogeneity of the Diseases.

Peroni E, Gottardi M, DAntona L, Randi M, Rosato A, Coltro G Int J Mol Sci. 2023; 24(20).

PMID: 37895004 PMC: 10607483. DOI: 10.3390/ijms242015325.


Role of thymic stromal lymphopoietin in allergy and beyond.

Ebina-Shibuya R, Leonard W Nat Rev Immunol. 2022; 23(1):24-37.

PMID: 35650271 PMC: 9157039. DOI: 10.1038/s41577-022-00735-y.


Acquired JAK2 mutations confer resistance to JAK inhibitors in cell models of acute lymphoblastic leukemia.

Downes C, McClure B, Bruning J, Page E, Breen J, Rehn J NPJ Precis Oncol. 2021; 5(1):75.

PMID: 34376782 PMC: 8355279. DOI: 10.1038/s41698-021-00215-x.


Targeting in Cancer: Promising Therapeutic Strategies.

Mustachio L, Chelariu-Raicu A, Szekvolgyi L, Roszik J Cancers (Basel). 2021; 13(6).

PMID: 33801965 PMC: 7999304. DOI: 10.3390/cancers13061204.


References
1.
Inaba H, Greaves M, Mullighan C . Acute lymphoblastic leukaemia. Lancet. 2013; 381(9881):1943-55. PMC: 3816716. DOI: 10.1016/S0140-6736(12)62187-4. View

2.
Pui C, Robison L, Look A . Acute lymphoblastic leukaemia. Lancet. 2008; 371(9617):1030-43. DOI: 10.1016/S0140-6736(08)60457-2. View

3.
Nguyen K, Devidas M, Cheng S, La M, Raetz E, Carroll W . Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia. 2008; 22(12):2142-50. PMC: 2872117. DOI: 10.1038/leu.2008.251. View

4.
Pui C, Yang J, Hunger S, Pieters R, Schrappe M, Biondi A . Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. J Clin Oncol. 2015; 33(27):2938-48. PMC: 4567699. DOI: 10.1200/JCO.2014.59.1636. View

5.
Bhojwani D, Pui C . Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013; 14(6):e205-17. DOI: 10.1016/S1470-2045(12)70580-6. View