» Articles » PMID: 33240218

Mitochondrial Dynamics in the Brain Are Associated With Feeding, Glucose Homeostasis, and Whole-Body Metabolism

Overview
Specialty Endocrinology
Date 2020 Nov 26
PMID 33240218
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The brain is responsible for maintaining whole-body energy homeostasis by changing energy input and availability. The hypothalamus and dorsal vagal complex (DVC) are the primary sites of metabolic control, able to sense both hormones and nutrients and adapt metabolism accordingly. The mitochondria respond to the level of nutrient availability by fusion or fission to maintain energy homeostasis; however, these processes can be disrupted by metabolic diseases including obesity and type II diabetes (T2D). Mitochondrial dynamics are crucial in the development and maintenance of obesity and T2D, playing a role in the control of glucose homeostasis and whole-body metabolism across neurons and glia in the hypothalamus and DVC.

Citing Articles

Fam163a knockdown and mitochondrial stress in the arcuate nucleus of hypothalamus reduce AgRP neuron activity and differentially regulate mitochondrial dynamics in mice.

Erdogan C, Yavuz Y, Ozgun H, Bilgin V, Agus S, Kalkan U Acta Physiol (Oxf). 2025; 241(4):e70020.

PMID: 40071489 PMC: 11897941. DOI: 10.1111/apha.70020.


Peanut Shell Extract Improves Mitochondrial Function in db/db Mice via Suppression of Oxidative Stress and Inflammation.

Deshmukh H, Santos J, Bender M, Dufour J, Lovett J, Shen C Nutrients. 2024; 16(13).

PMID: 38999726 PMC: 11243022. DOI: 10.3390/nu16131977.


Mitochondria: the gatekeepers between metabolism and immunity.

Trinchese G, Cimmino F, Catapano A, Cavaliere G, Mollica M Front Immunol. 2024; 15:1334006.

PMID: 38464536 PMC: 10920337. DOI: 10.3389/fimmu.2024.1334006.


Therapeutic Potential of P110 Peptide: New Insights into Treatment of Alzheimer's Disease.

Srivastava A, Johnson M, Renna H, Sheehan K, Ahmed S, Palaia T Life (Basel). 2023; 13(11).

PMID: 38004296 PMC: 10672680. DOI: 10.3390/life13112156.


Editorial: The link between obesity, type 2 diabetes, and mitochondria.

Luo M, Santulli G Front Endocrinol (Lausanne). 2023; 14:1229935.

PMID: 37409237 PMC: 10319143. DOI: 10.3389/fendo.2023.1229935.


References
1.
Bagnol D, Lu X, Kaelin C, Day H, Ollmann M, Gantz I . Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci. 1999; 19(18):RC26. PMC: 6782481. View

2.
Davies V, Hollins A, Piechota M, Yip W, Davies J, White K . Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet. 2007; 16(11):1307-18. DOI: 10.1093/hmg/ddm079. View

3.
Liu T, Kong D, Shah B, Ye C, Koda S, Saunders A . Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron. 2012; 73(3):511-22. PMC: 3278709. DOI: 10.1016/j.neuron.2011.11.027. View

4.
Navale A, Paranjape A . Glucose transporters: physiological and pathological roles. Biophys Rev. 2017; 8(1):5-9. PMC: 5425736. DOI: 10.1007/s12551-015-0186-2. View

5.
Martins de Brito O, Scorrano L . Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008; 456(7222):605-10. DOI: 10.1038/nature07534. View