» Articles » PMID: 33240045

Increased Dopamine Type 2 Gene Expression in the Dorsal Striatum in Individuals With Autism Spectrum Disorder Suggests Alterations in Indirect Pathway Signaling and Circuitry

Overview
Specialty Cell Biology
Date 2020 Nov 26
PMID 33240045
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Autism spectrum disorder (ASD) is behaviorally defined and diagnosed by delayed and/or impeded language, stereotyped repetitive behaviors, and difficulties with social interactions. Additionally, there are disruptions in motor processing, which includes the intent to execute movements, interrupted/inhibited action chain sequences, impaired execution of speech, and repetitive motor behaviors. Cortical loops through basal ganglia (BG) structures are known to play critical roles in the typical functioning of these actions. Specifically, corticostriate projections to the dorsal striatum (caudate and putamen) convey abundant input from motor, cognitive and limbic cortices and subsequently project to other BG structures. Excitatory dopamine (DA) type 1 receptors are predominantly expressed on GABAergic medium spiny neurons (MSNs) in the dorsal striatum as part of the "direct pathway" to GPi and SNpr whereas inhibitory DA type 2 receptors are predominantly expressed on MSNs that primarily project to GPe. This study aimed to better understand how this circuitry may be altered in ASD, especially concerning the neurochemical modulation of GABAergic MSNs within the two major BG pathways. We utilized two classical methods to analyze the postmortem BG in ASD in comparison to neurotypical cases: ligand binding autoradiography to quantify densities of GABA-A, GABA-B, 5-HT, and DA type 1 and 2 receptors and hybridization histochemistry (ISHH) to quantify mRNA for D1, D2 receptors and three key GABAergic subunits (α1, β2, and γ2), as well as the GABA synthesizing enzymes (GAD65/67). Results demonstrated significant increases in D2 mRNA within MSNs in both the caudate and putamen, which was further verified by proenkephalin mRNA that is co-expressed with the D2 receptor in the indirect pathway MSNs. In contrast, all other GABAergic, serotonergic and dopaminergic markers in the dorsal striatum had comparable labeling densities. These results indicate alterations in the indirect pathway of the BG, with possible implications for the execution of competing motor programs and E/I imbalance in the direct/indirect motor feedback pathways through thalamic and motor cortical areas. Results also provide insights regarding the efficacy of FDA-approved drugs used to treat individuals with ASD acting on specific DA and 5-HT receptor subtypes.

Citing Articles

Long-term, cell type-specific effects of prenatal stress on dorsal striatum and relevant behaviors in mice.

Evans M, Hing B, Weber M, Maurer S, Baig A, Kim G bioRxiv. 2025; .

PMID: 39763907 PMC: 11703269. DOI: 10.1101/2024.12.27.627207.


Sex-Specific Impacts of Early Life Sleep Disruption: Ethanol Seeking, Social Interaction, and Anxiety Are Differentially Altered in Adolescent Prairie Voles.

Ginder D, Tinsley C, Kaiser M, Lim M Dev Psychobiol. 2024; 66(7):e22541.

PMID: 39192630 PMC: 11361717. DOI: 10.1002/dev.22541.


Dopaminergic Perturbation in the Aetiology of Neurodevelopmental Disorders.

Ijomone O, Oria R, Ijomone O, Aschner M, Bornhorst J Mol Neurobiol. 2024; 62(2):2420-2434.

PMID: 39110391 PMC: 11772124. DOI: 10.1007/s12035-024-04418-8.


Dopamine Dysregulation in Reward and Autism Spectrum Disorder.

Blum K, Bowirrat A, Sunder K, Thanos P, Hanna C, Gold M Brain Sci. 2024; 14(7).

PMID: 39061473 PMC: 11274922. DOI: 10.3390/brainsci14070733.


Striatal insights: a cellular and molecular perspective on repetitive behaviors in pathology.

Burton C, Longaretti A, Zlatanovic A, Gomes G, Tonini R Front Cell Neurosci. 2024; 18:1386715.

PMID: 38601025 PMC: 11004256. DOI: 10.3389/fncel.2024.1386715.


References
1.
Averbeck B, Lehman J, Jacobson M, Haber S . Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014; 34(29):9497-505. PMC: 4099536. DOI: 10.1523/JNEUROSCI.5806-12.2014. View

2.
Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar M, Licalzi E . Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry. 2005; 58(3):226-32. DOI: 10.1016/j.biopsych.2005.03.040. View

3.
Corbetta M, Shulman G . Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002; 3(3):201-15. DOI: 10.1038/nrn755. View

4.
Nielsen K, Soghomonian J . Normalization of glutamate decarboxylase gene expression in the entopeduncular nucleus of rats with a unilateral 6-hydroxydopamine lesion correlates with increased GABAergic input following intermittent but not continuous levodopa. Neuroscience. 2003; 123(1):31-42. DOI: 10.1016/j.neuroscience.2003.08.010. View

5.
DiCarlo G, Aguilar J, Matthies H, Harrison F, Bundschuh K, West A . Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Invest. 2019; 129(8):3407-3419. PMC: 6668686. DOI: 10.1172/JCI127411. View