» Articles » PMID: 33239289

Direct Observation of Nanoparticle-surfactant Assembly and Jamming at the Water-oil Interface

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Nov 26
PMID 33239289
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Electrostatic interactions between nanoparticles (NPs) and functionalized ligands lead to the formation of NP surfactants (NPSs) that assemble at the water-oil interface and form jammed structures. To understand the interfacial behavior of NPSs, it is necessary to understand the mechanism by which the NPSs attach to the interface and how this attachment depends on the areal coverage of the interface. Through direct observation with high spatial and temporal resolution, using laser scanning confocal microscopy and in situ atomic force microscopy (AFM), we observe that early-stage attachment of NPs to the interface is diffusion limited and with increasing areal density of the NPSs, further attachment requires cooperative displacement of the previously assembled NPSs both laterally and vertically. The unprecedented detail provided by in situ AFM reveals the complex mechanism of attachment and the deeply nonequilibrium nature of the assembly.

Citing Articles

Bridged emulsion gels from polymer-nanoparticle enabling large-amount biomedical encapsulation and functionalization.

Wan C, He S, Cheng Q, Du K, Song Y, Yu X Nat Commun. 2024; 15(1):10789.

PMID: 39737995 PMC: 11685963. DOI: 10.1038/s41467-024-55099-9.


Distinct Contributions of Particle Adsorption and Interfacial Compression to the Surface Pressure of a Fluid Interface.

Fu Y, Frechette J Langmuir. 2024; 40(46):24471-24483.

PMID: 39514300 PMC: 11580387. DOI: 10.1021/acs.langmuir.4c03184.


Shape anisotropy induced jamming of nanoparticles at liquid interfaces: a tensiometric study.

Kumar C, Bhattacharjee S, Srivastava S Nanoscale Adv. 2024; 6(18):4683-4692.

PMID: 39263396 PMC: 11386127. DOI: 10.1039/d4na00280f.


Optical Actuation of Nanoparticle-Loaded Liquid-Liquid Interfaces for Active Photonics.

Kim Y, Yao K, Ponce C, Zheng Y ACS Nano. 2024; 18(24):15627-15637.

PMID: 38850254 PMC: 11299852. DOI: 10.1021/acsnano.4c01227.


Reconfigurable aqueous 3D printing with adaptive dual locks.

Fu Y, Li Z, Zhao S, Hou H, Chai Y Sci Adv. 2024; 10(17):eadk4080.

PMID: 38657077 PMC: 11042732. DOI: 10.1126/sciadv.adk4080.


References
1.
Hua X, Bevan M, Frechette J . Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface. Langmuir. 2018; 34(16):4830-4842. DOI: 10.1021/acs.langmuir.8b00053. View

2.
Schwenke K, Isa L, Del Gado E . Assembly of nanoparticles at liquid interfaces: crowding and ordering. Langmuir. 2014; 30(11):3069-74. DOI: 10.1021/la404254n. View

3.
Zhu Y, Chen F . pH-responsive drug-delivery systems. Chem Asian J. 2014; 10(2):284-305. DOI: 10.1002/asia.201402715. View

4.
Kim P, Gao Y, Chai Y, Ashby P, Ribbe A, Hoagland D . Assessing Pair Interaction Potentials of Nanoparticles on Liquid Interfaces. ACS Nano. 2019; 13(3):3075-3082. DOI: 10.1021/acsnano.8b08189. View

5.
Gu P, Chai Y, Hou H, Xie G, Jiang Y, Xu Q . Stabilizing Liquids Using Interfacial Supramolecular Polymerization. Angew Chem Int Ed Engl. 2019; 58(35):12112-12116. DOI: 10.1002/anie.201906339. View