» Articles » PMID: 33238124

Warburg-like Metabolic Reprogramming in Aging Intestinal Stem Cells Contributes to Tissue Hyperplasia

Overview
Journal Cell Rep
Publisher Cell Press
Date 2020 Nov 25
PMID 33238124
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

In many tissues, stem cell (SC) proliferation is dynamically adjusted to regenerative needs. How SCs adapt their metabolism to meet the demands of proliferation and how changes in such adaptive mechanisms contribute to age-related dysfunction remain poorly understood. Here, we identify mitochondrial Ca uptake as a central coordinator of SC metabolism. Live imaging of genetically encoded metabolite sensors in intestinal SCs (ISCs) of Drosophila reveals that mitochondrial Ca uptake transiently adapts electron transport chain flux to match energetic demand upon proliferative activation. This tight metabolic adaptation is lost in ISCs of old flies, as declines in mitochondrial Ca uptake promote a "Warburg-like" metabolic reprogramming toward aerobic glycolysis. This switch mimics metabolic reprogramming by the oncogene Ras and enhances ISC hyperplasia. Our data identify a critical mechanism for metabolic adaptation of tissue SCs and reveal how its decline sets aging SCs on a metabolic trajectory reminiscent of that seen upon oncogenic transformation.

Citing Articles

Alterations in ether phospholipids metabolism activate the conserved UPR-Xbp1- PDIA3/ERp60 signaling to maintain intestinal homeostasis.

Makdissi S, Loudhaief R, George S, Weller T, Salim M, Malick A iScience. 2025; 28(3):111946.

PMID: 40034858 PMC: 11872617. DOI: 10.1016/j.isci.2025.111946.


Metabolic Adaptations in Cancer and the Host Using Models and Advanced Tools.

Saez-Carrion E, Aguilar-Aragon M, Garcia-Lopez L, Dominguez M, Uribe M Cells. 2024; 13(23).

PMID: 39682725 PMC: 11640731. DOI: 10.3390/cells13231977.


Variable bioenergetic sensitivity of neurons and astrocytes to insulin and extracellular glucose.

Sims S, Frazier H, Case S, Lin R, Trosper J, Vekaria H NPJ Metab Health Dis. 2024; 2(1):33.

PMID: 39524535 PMC: 11549053. DOI: 10.1038/s44324-024-00037-y.


The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities.

Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R Neoplasia. 2024; 58:101076.

PMID: 39476482 PMC: 11555605. DOI: 10.1016/j.neo.2024.101076.


Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology.

Barnett D, Zimmer T, Booraem C, Palaguachi F, Meadows S, Xiao H bioRxiv. 2024; .

PMID: 39229090 PMC: 11370371. DOI: 10.1101/2024.08.19.608708.


References
1.
Lee K, Huh S, Lee S, Wu Z, Kim A, Kang H . Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci U S A. 2018; 115(38):E8844-E8853. PMC: 6156612. DOI: 10.1073/pnas.1721136115. View

2.
Brand M, Goncalves R, Orr A, Vargas L, Gerencser A, Borch Jensen M . Suppressors of Superoxide-HO Production at Site I of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metab. 2016; 24(4):582-592. PMC: 5061631. DOI: 10.1016/j.cmet.2016.08.012. View

3.
Colca J, McDonald W, Cavey G, Cole S, Holewa D, Brightwell-Conrad A . Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)--relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS One. 2013; 8(5):e61551. PMC: 3655167. DOI: 10.1371/journal.pone.0061551. View

4.
Schell J, Olson K, Jiang L, Hawkins A, Van Vranken J, Xie J . A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell. 2014; 56(3):400-413. PMC: 4268416. DOI: 10.1016/j.molcel.2014.09.026. View

5.
Chandel N, Jasper H, Ho T, Passegue E . Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol. 2016; 18(8):823-32. DOI: 10.1038/ncb3385. View