» Articles » PMID: 33232666

The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells

Overview
Journal Cell Metab
Publisher Cell Press
Date 2020 Nov 24
PMID 33232666
Citations 110
Authors
Affiliations
Soon will be listed here.
Abstract

Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.

Citing Articles

Defined Diets Link Iron and α-Linolenic Acid to Cyp1b1 Regulation of Neonatal Liver Development Through Srebp Forms and LncRNA H19.

Jefcoate C, Larsen M, Song Y, Maguire M, Sheibani N Int J Mol Sci. 2025; 26(5).

PMID: 40076634 PMC: 11901102. DOI: 10.3390/ijms26052011.


Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment.

Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y Front Immunol. 2025; 16:1494788.

PMID: 40028341 PMC: 11868052. DOI: 10.3389/fimmu.2025.1494788.


Indole-3-propionic acid promotes hepatic stellate cells inactivation.

Ilha M, Sehgal R, Matilainen J, Rilla K, Kaminska D, Gandhi S J Transl Med. 2025; 23(1):253.

PMID: 40025530 PMC: 11871697. DOI: 10.1186/s12967-025-06266-z.


Cancer-secreted exosomal miR-1246 promotes colorectal cancer liver metastasis by activating hepatic stellate cells.

Liu X, Liu J, Wang X, Zou Y, Tao X, Li J Mol Med. 2025; 31(1):68.

PMID: 39979806 PMC: 11841005. DOI: 10.1186/s10020-025-01112-w.


Trajectory analysis of hepatic stellate cell differentiation reveals metabolic regulation of cell commitment and fibrosis.

Martinez Garcia de la Torre R, Vallverdu J, Xu Z, Arino S, Ferrer-Lorente R, Zanatto L Nat Commun. 2025; 16(1):1489.

PMID: 39929812 PMC: 11811062. DOI: 10.1038/s41467-025-56024-4.


References
1.
Friedman S, Wei S, Blaner W . Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF. Am J Physiol. 1993; 264(5 Pt 1):G947-52. DOI: 10.1152/ajpgi.1993.264.5.G947. View

2.
Tsukamoto H . Adipogenic phenotype of hepatic stellate cells. Alcohol Clin Exp Res. 2005; 29(11 Suppl):132S-133S. DOI: 10.1097/01.alc.0000189279.92602.f0. View

3.
Allenby G, Bocquel M, Saunders M, Kazmer S, Speck J, Rosenberger M . Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A. 1993; 90(1):30-4. PMC: 45593. DOI: 10.1073/pnas.90.1.30. View

4.
Lee Y, Jeong W . Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol Hepatol. 2012; 27 Suppl 2:75-9. DOI: 10.1111/j.1440-1746.2011.07007.x. View

5.
Jiang G, Yang H, Wang L, Wildey G, Fung J, Qian S . Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner. Transplantation. 2008; 86(11):1492-502. PMC: 2888269. DOI: 10.1097/TP.0b013e31818bfd13. View