» Articles » PMID: 33219020

Strong Coupling of Single Quantum Dots with Low-refractive-index/high-refractive-index Materials at Room Temperature

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Nov 21
PMID 33219020
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Strong coupling between a cavity and transition dipole moments in emitters leads to vacuum Rabi splitting. Researchers have not reported strong coupling between a single emitter and a dielectric cavity at room temperature until now. In this study, we investigated the photoluminescence (PL) spectra of colloidal quantum dots on the surface of a SiO/Si material at various collection angles at room temperature. We measured the corresponding reflection spectra for the SiO/Si material and compared them with the PL spectra. We observed PL spectral splitting and regarded it as strong coupling between colloidal quantum dots and the SiO/Si material. Upper polaritons and lower polaritons exhibited anticrossing behavior. We observed Rabi splitting from single-photon emission in the dielectric cavity at room temperature. Through analysis, we attributed the Rabi splitting to strong coupling between quantum dots and bound states in the continuum in the low-refractive-index/high-refractive-index hybrid material.

Citing Articles

Enhanced coupling of perovskites with semiconductive properties by tuning multi-modal optically active nanostructured set-ups for photonics, photovoltaics and energy applications.

Elyamny S, Bracamonte A RSC Adv. 2025; 15(7):5571-5596.

PMID: 40007863 PMC: 11851274. DOI: 10.1039/d5ra00458f.


Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications.

Kim Y, Barulin A, Kim S, Lee L, Kim I Nanophotonics. 2024; 12(3):413-439.

PMID: 39635391 PMC: 11501129. DOI: 10.1515/nanoph-2022-0542.


Tunable single emitter-cavity coupling strength through waveguide-assisted energy quantum transfer.

Liu Y, Zhou H, Lin L, Sun H Light Sci Appl. 2024; 13(1):171.

PMID: 39025842 PMC: 11258325. DOI: 10.1038/s41377-024-01508-z.


Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling.

Liu R, Geng M, Ai J, Fan X, Liu Z, Lu Y Nat Commun. 2024; 15(1):4103.

PMID: 38755130 PMC: 11099047. DOI: 10.1038/s41467-024-46831-6.


Strong coupling of hybrid states of light and matter in cavity-coupled quantum dot solids.

Sangeetha A, Reivanth K, Thrupthika T, Ramya S, Nataraj D Sci Rep. 2023; 13(1):16662.

PMID: 37794042 PMC: 10551025. DOI: 10.1038/s41598-023-42105-1.

References
1.
Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A . Room-temperature Tamm-plasmon exciton-polaritons with a WSe monolayer. Nat Commun. 2016; 7:13328. PMC: 5095560. DOI: 10.1038/ncomms13328. View

2.
Marinica D, Borisov A, Shabanov S . Bound States in the continuum in photonics. Phys Rev Lett. 2008; 100(18):183902. DOI: 10.1103/PhysRevLett.100.183902. View

3.
Wiersig J . Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys Rev Lett. 2007; 97(25):253901. DOI: 10.1103/PhysRevLett.97.253901. View

4.
Leng H, Szychowski B, Daniel M, Pelton M . Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat Commun. 2018; 9(1):4012. PMC: 6167320. DOI: 10.1038/s41467-018-06450-4. View

5.
Chikkaraddy R, de Nijs B, Benz F, Barrow S, Scherman O, Rosta E . Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016; 535(7610):127-30. PMC: 4947385. DOI: 10.1038/nature17974. View