» Articles » PMID: 33214592

Proof-of-principle Experiment for Laser-driven Cold Neutron Source

Overview
Journal Sci Rep
Specialty Science
Date 2020 Nov 20
PMID 33214592
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The scientific and technical advances continue to support novel discoveries by allowing scientists to acquire new insights into the structure and properties of matter using new tools and sources. Notably, neutrons are among the most valuable sources in providing such a capability. At the Institute of Laser Engineering, Osaka, the first steps are taken towards the development of a table-top laser-driven neutron source, capable of producing a wide range of energies with high brightness and temporal resolution. By employing a pure hydrogen moderator, maintained at cryogenic temperature, a cold neutron ([Formula: see text]) flux of [Formula: see text]/pulse was measured at the proximity of the moderator exit surface. The beam duration of hundreds of ns to tens of [Formula: see text] is evaluated for neutron energies ranging from 100s keV down to meV via Monte-Carlo techniques. Presently, with the upcoming J-EPoCH high repetition rate laser at Osaka University, a cold neutron flux in orders of [Formula: see text] is expected to be delivered at the moderator in a compact beamline.

Citing Articles

Demonstration of active neutron interrogation of special nuclear materials using a high-intensity short-pulse-laser-driven neutron source.

Favalli A, Henzlova D, Croft S, Deppert O, Falk K, Fernandez J Sci Rep. 2025; 15(1):724.

PMID: 39753631 PMC: 11699058. DOI: 10.1038/s41598-024-82641-y.


Fast neutron generation with few-cycle, relativistic laser pulses at 1 Hz repetition rate.

Osvay K, Singh P, Varmazyar P, Fule M, Gilinger T, Kis B Sci Rep. 2024; 14(1):25302.

PMID: 39455744 PMC: 11511913. DOI: 10.1038/s41598-024-75855-7.


Demonstration of shape analysis of neutron resonance transmission spectrum measured with a laser-driven neutron source.

Koizumi M, Ito F, Lee J, Hironaka K, Takahashi T, Suzuki S Sci Rep. 2024; 14(1):21916.

PMID: 39300185 PMC: 11413018. DOI: 10.1038/s41598-024-72836-8.


Single-shot laser-driven neutron resonance spectroscopy for temperature profiling.

Lan Z, Arikawa Y, Mirfayzi S, Morace A, Hayakawa T, Sato H Nat Commun. 2024; 15(1):5365.

PMID: 38997259 PMC: 11245602. DOI: 10.1038/s41467-024-49142-y.


Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source.

Zimmer M, Scheuren S, Kleinschmidt A, Mitura N, Tebartz A, Schaumann G Nat Commun. 2022; 13(1):1173.

PMID: 35246525 PMC: 8897477. DOI: 10.1038/s41467-022-28756-0.

References
1.
Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M . Bright laser-driven neutron source based on the relativistic transparency of solids. Phys Rev Lett. 2014; 110(4):044802. DOI: 10.1103/PhysRevLett.110.044802. View

2.
Toncian T, Borghesi M, Fuchs J, dHumieres E, Antici P, Audebert P . Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science. 2006; 312(5772):410-3. DOI: 10.1126/science.1124412. View

3.
Chadha M, Capala J, Coderre J, Elowitz E, Iwai J, JOEL D . Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. Int J Radiat Oncol Biol Phys. 1998; 40(4):829-34. DOI: 10.1016/s0360-3016(97)00891-2. View

4.
Maksimchuk , Gu , Flippo , Umstadter , Bychenkov . Forward ion acceleration in thin films driven by a high-intensity laser. Phys Rev Lett. 2000; 84(18):4108-11. DOI: 10.1103/PhysRevLett.84.4108. View

5.
Snavely R, Key M, Hatchett S, Cowan T, Roth M, Phillips T . Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys Rev Lett. 2000; 85(14):2945-8. DOI: 10.1103/PhysRevLett.85.2945. View