» Articles » PMID: 33213062

Kinome Array Profiling of Patient-Derived Pancreatic Ductal Adenocarcinoma Identifies Differentially Active Protein Tyrosine Kinases

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2020 Nov 20
PMID 33213062
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal improvements in patient outcomes and persistently abysmal patient survival rates underscore the great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines capable of identifying differentially active protein tyrosine kinases in different patient-derived pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer therapy. Consistent with previously described reports, the resultant peptide-based kinome array profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2 (EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase (SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK), Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase (ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together, these results support the utility of peptide array kinomic analyses in the generation of potential candidate kinases for future pancreatic cancer therapeutic development.

Citing Articles

Insulin receptor responsiveness governs TGFβ-induced hepatic stellate cell activation: Insulin resistance instigates liver fibrosis.

Lee W, Bates E, Kipp Z, Pauss S, Martinez G, Blair C FASEB J. 2025; 39(5):e70427.

PMID: 40022609 PMC: 11871568. DOI: 10.1096/fj.202402169R.


Tumor-Intrinsic Kinome Landscape of Pancreatic Cancer Reveals New Therapeutic Approaches.

Xu Y, Peng X, East M, McCabe I, Stroman G, Jenner M Cancer Discov. 2024; 15(2):346-362.

PMID: 39632628 PMC: 11805639. DOI: 10.1158/2159-8290.CD-23-1480.


Illuminating the dark kinome: utilizing multiplex peptide activity arrays to functionally annotate understudied kinases.

Hamoud A, Alganem K, Hanna S, Morran M, Henkel N, Imami A Cell Commun Signal. 2024; 22(1):501.

PMID: 39415254 PMC: 11484317. DOI: 10.1186/s12964-024-01868-4.


Nanoformulation of dasatinib cannot overcome therapy resistance of pancreatic cancer cells with low LYN kinase expression.

Kaul M, Sanin A, Shi W, Janiak C, Kahlert U Pharmacol Rep. 2024; 76(4):793-806.

PMID: 38739359 PMC: 11294441. DOI: 10.1007/s43440-024-00600-w.


Neuronal alterations in AKT isotype expression in schizophrenia.

Devine E, Imami A, Eby H, Hamoud A, Golchin H, Ryan W Res Sq. 2024; .

PMID: 38559131 PMC: 10980160. DOI: 10.21203/rs.3.rs-3940448/v1.


References
1.
Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q . GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel. 2010; 24(3):255-60. DOI: 10.1093/protein/gzq094. View

2.
Schrode N, Ho S, Yamamuro K, Dobbyn A, Huckins L, Matos M . Synergistic effects of common schizophrenia risk variants. Nat Genet. 2019; 51(10):1475-1485. PMC: 6778520. DOI: 10.1038/s41588-019-0497-5. View

3.
McGuire J, DePasquale E, Funk A, ODonnovan S, Hasselfeld K, Marwaha S . Abnormalities of signal transduction networks in chronic schizophrenia. NPJ Schizophr. 2017; 3(1):30. PMC: 5595970. DOI: 10.1038/s41537-017-0032-6. View

4.
Liu S, Ballian N, Belaguli N, Patel S, Li M, Templeton N . PDX-1 acts as a potential molecular target for treatment of human pancreatic cancer. Pancreas. 2008; 37(2):210-20. DOI: 10.1097/MPA.0b013e31816a4a33. View

5.
Ahn K, O Y, Ji Y, Cho H, Lee D . Synergistic Anti-Cancer Effects of AKT and SRC Inhibition in Human Pancreatic Cancer Cells. Yonsei Med J. 2018; 59(6):727-735. PMC: 6037593. DOI: 10.3349/ymj.2018.59.6.727. View