» Articles » PMID: 33205062

Inferring Multiple Sclerosis Stages from the Blood Transcriptome Via Machine Learning

Overview
Journal Cell Rep Med
Publisher Cell Press
Date 2020 Nov 18
PMID 33205062
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Peripheral blood mononuclear cells (PBMCs) bear specific dysregulations in genes and pathways at distinct stages of multiple sclerosis (MS) that may help with classifying MS and non-MS subjects, specifying the early stage of disease, or discriminating among MS courses. Here we describe an unbiased machine learning workflow to build MS stage-specific classifiers based on PBMC transcriptomics profiles from more than 300 individuals, including healthy subjects and patients with clinically isolated syndromes, relapsing-remitting MS, primary or secondary progressive MS, or other neurological disorders. The pipeline, designed to optimize and compare the performance of distinct machine learning algorithms in the training cohort, generates predictive models not influenced by demographic features, such as age and gender, and displays high accuracy in the independent validation cohort. Proper application of machine learning to transcriptional profiles of circulating blood cells may allow identification of disease state and stage in MS.

Citing Articles

Big data and artificial intelligence applied to blood and CSF fluid biomarkers in multiple sclerosis.

Arrambide G, Comabella M, Tur C Front Immunol. 2024; 15:1459502.

PMID: 39493759 PMC: 11527669. DOI: 10.3389/fimmu.2024.1459502.


Remyelinating Drugs at a Crossroad: How to Improve Clinical Efficacy and Drug Screenings.

Al Jaf A, Peria S, Fabiano T, Ragnini-Wilson A Cells. 2024; 13(16.

PMID: 39195216 PMC: 11352944. DOI: 10.3390/cells13161326.


Ultrastructural Characterization of PBMCs and Extracellular Vesicles in Multiple Sclerosis: A Pilot Study.

De Masi R, Orlando S, Carata E, Panzarini E Int J Mol Sci. 2024; 25(13).

PMID: 38999977 PMC: 11241448. DOI: 10.3390/ijms25136867.


Role of ferroptosis in neuroimmunity and neurodegeneration in multiple sclerosis revealed by multi-omics data.

Wu T, Ning S, Zhang H, Cao Y, Li X, Hao J J Cell Mol Med. 2024; 28(10):e18396.

PMID: 38801304 PMC: 11129625. DOI: 10.1111/jcmm.18396.


Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review.

Naji Y, Mahdaoui M, Klevor R, Kissani N Cureus. 2023; 15(9):e45412.

PMID: 37854769 PMC: 10581506. DOI: 10.7759/cureus.45412.


References
1.
Solomon A, Naismith R, Cross A . Misdiagnosis of multiple sclerosis: Impact of the 2017 McDonald criteria on clinical practice. Neurology. 2018; 92(1):26-33. PMC: 6336166. DOI: 10.1212/WNL.0000000000006583. View

2.
Johnson W, Li C, Rabinovic A . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2006; 8(1):118-27. DOI: 10.1093/biostatistics/kxj037. View

3.
Ambroise C, McLachlan G . Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A. 2002; 99(10):6562-6. PMC: 124442. DOI: 10.1073/pnas.102102699. View

4.
Miller D, Chard D, Ciccarelli O . Clinically isolated syndromes. Lancet Neurol. 2012; 11(2):157-69. DOI: 10.1016/S1474-4422(11)70274-5. View

5.
Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A . GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 2012; 40(Web Server issue):W478-83. PMC: 3394297. DOI: 10.1093/nar/gks402. View