» Articles » PMID: 33198241

Identification of Pre-Diagnostic Metabolic Patterns for Glioma Using Subset Analysis of Matched Repeated Time Points

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2020 Nov 17
PMID 33198241
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Here, we present a strategy for early molecular marker pattern detection-Subset analysis of Matched Repeated Time points (SMART)-used in a mass-spectrometry-based metabolomics study of repeated blood samples from future glioma patients and their matched controls. The outcome from SMART is a predictive time span when disease-related changes are detectable, defined by time to diagnosis and time between longitudinal sampling, and visualization of molecular marker patterns related to future disease. For glioma, we detect significant changes in metabolite levels as early as eight years before diagnosis, with longitudinal follow up within seven years. Elevated blood plasma levels of myo-inositol, cysteine, N-acetylglucosamine, creatinine, glycine, proline, erythronic-, 4-hydroxyphenylacetic-, uric-, and aceturic acid were particularly evident in glioma cases. We use data simulation to ensure non-random events and a separate data set for biomarker validation. The latent biomarker, consisting of 15 interlinked and significantly altered metabolites, shows a strong correlation to oxidative metabolism, glutathione biosynthesis and monosaccharide metabolism, linked to known early events in tumor development. This study highlights the benefits of progression pattern analysis and provide a tool for the discovery of early markers of disease.

Citing Articles

Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance.

Srivastava S, Anbiaee R, Houshyari M, Laxmi , Sridhar S, Ashique S Cancer Cell Int. 2025; 25(1):89.

PMID: 40082966 PMC: 11908050. DOI: 10.1186/s12935-025-03721-1.


Blood based metabolic markers of glioma from pre-diagnosis to surgery.

Loding S, Antti H, Sjoberg R, Melin B, Bjorkblom B Sci Rep. 2024; 14(1):20680.

PMID: 39237693 PMC: 11377417. DOI: 10.1038/s41598-024-71375-6.


The Association between Blood Test Trends and Undiagnosed Cancer: A Systematic Review and Critical Appraisal.

Virdee P, Collins K, Smith C, Yang X, Zhu S, Roberts S Cancers (Basel). 2024; 16(9).

PMID: 38730644 PMC: 11083147. DOI: 10.3390/cancers16091692.


Modifications of Blood Molecular Components after Treatment with Low Ozone Concentrations.

Inguscio C, Cisterna B, Carton F, Barberis E, Manfredi M, Malatesta M Int J Mol Sci. 2023; 24(24).

PMID: 38139004 PMC: 10742958. DOI: 10.3390/ijms242417175.


Altered plasma metabolite levels can be detected years before a glioma diagnosis.

Loding S, Andersson U, Kaaks R, Schulze M, Pala V, Urbarova I JCI Insight. 2023; 8(19).

PMID: 37651185 PMC: 10619434. DOI: 10.1172/jci.insight.171225.


References
1.
Kokoglu E, Belce A, Ozyurt E, Tepeler Z . Xanthine oxidase levels in human brain tumors. Cancer Lett. 1990; 50(3):179-81. DOI: 10.1016/0304-3835(90)90262-v. View

2.
Durmo F, Rydelius A, Cuellar Baena S, Askaner K, Latt J, Bengzon J . Multivoxel H-MR Spectroscopy Biometrics for Preoprerative Differentiation Between Brain Tumors. Tomography. 2018; 4(4):172-181. PMC: 6299741. DOI: 10.18383/j.tom.2018.00051. View

3.
Olgemoller B, Schwaabe S, Schleicher E, Gerbitz K . Upregulation of myo-inositol transport compensates for competitive inhibition by glucose. An explanation for the inositol paradox?. Diabetes. 1993; 42(8):1119-25. DOI: 10.2337/diab.42.8.1119. View

4.
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Petrotto E, Tozzi M . Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors. Int J Mol Sci. 2018; 19(11). PMC: 6274932. DOI: 10.3390/ijms19113598. View

5.
Battelli M, Polito L, Bortolotti M, Bolognesi A . Xanthine oxidoreductase in cancer: more than a differentiation marker. Cancer Med. 2015; 5(3):546-57. PMC: 4799950. DOI: 10.1002/cam4.601. View