» Articles » PMID: 33196841

ProThermDB: Thermodynamic Database for Proteins and Mutants Revisited After 15 Years

Overview
Specialty Biochemistry
Date 2020 Nov 16
PMID 33196841
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

ProThermDB is an updated version of the thermodynamic database for proteins and mutants (ProTherm), which has ∼31 500 data on protein stability, an increase of 84% from the previous version. It contains several thermodynamic parameters such as melting temperature, free energy obtained with thermal and denaturant denaturation, enthalpy change and heat capacity change along with experimental methods and conditions, sequence, structure and literature information. Besides, the current version of the database includes about 120 000 thermodynamic data obtained for different organisms and cell lines, which are determined by recent high throughput proteomics techniques using whole-cell approaches. In addition, we provided a graphical interface for visualization of mutations at sequence and structure levels. ProThermDB is cross-linked with other relevant databases, PDB, UniProt, PubMed etc. It is freely available at https://web.iitm.ac.in/bioinfo2/prothermdb/index.html without any login requirements. It is implemented in Python, HTML and JavaScript, and supports the latest versions of major browsers, such as Firefox, Chrome and Safari.

Citing Articles

Rewiring protein sequence and structure generative models to enhance protein stability prediction.

Li Z, Luo Y bioRxiv. 2025; .

PMID: 40027759 PMC: 11870403. DOI: 10.1101/2025.02.13.638154.


FoldX force field revisited, an improved version.

Delgado J, Reche R, Cianferoni D, Orlando G, van der Kant R, Rousseau F Bioinformatics. 2025; 41(2).

PMID: 39913370 PMC: 11879241. DOI: 10.1093/bioinformatics/btaf064.


Impact of frequent ARID1A mutations on protein stability provides insights into cancer pathogenesis.

Goutam R, Huang G, Medina E, Ding F, Edenfield W, Sanabria H Sci Rep. 2025; 15(1):3072.

PMID: 39856215 PMC: 11760938. DOI: 10.1038/s41598-025-87103-7.


Site-saturation mutagenesis of 500 human protein domains.

Beltran A, Jiang X, Shen Y, Lehner B Nature. 2025; 637(8047):885-894.

PMID: 39779847 PMC: 11754108. DOI: 10.1038/s41586-024-08370-4.


Prediction of protein biophysical traits from limited data: a case study on nanobody thermostability through NanoMelt.

Ramon A, Ni M, Predeina O, Gaffey R, Kunz P, Onuoha S MAbs. 2025; 17(1):2442750.

PMID: 39772905 PMC: 11730357. DOI: 10.1080/19420862.2024.2442750.


References
1.
Sarai A, Gromiha M, An J, Prabakaran P, Selvaraj S, Kono H . Thermodynamic databases for proteins and protein-nucleic acid interactions. Biopolymers. 2002; 61(2):121-6. DOI: 10.1002/1097-0282(2002)61:2<121::AID-BIP10077>3.0.CO;2-1. View

2.
Kulandaisamy A, Zaucha J, Frishman D, Gromiha M . MPTherm-pred: Analysis and Prediction of Thermal Stability Changes upon Mutations in Transmembrane Proteins. J Mol Biol. 2020; 433(11):166646. DOI: 10.1016/j.jmb.2020.09.005. View

3.
Yamada Y, Banno Y, Yoshida H, Kikuchi R, Akao Y, Murate T . Catalytic inactivation of human phospholipase D2 by a naturally occurring Gly901Asp mutation. Arch Med Res. 2006; 37(6):696-9. DOI: 10.1016/j.arcmed.2006.01.006. View

4.
Pucci F, Bourgeas R, Rooman M . Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC. Sci Rep. 2016; 6:23257. PMC: 4796876. DOI: 10.1038/srep23257. View

5.
Yin S, Ding F, Dokholyan N . Modeling backbone flexibility improves protein stability estimation. Structure. 2007; 15(12):1567-76. DOI: 10.1016/j.str.2007.09.024. View