Schoeppe R, Waldmann M, Jessen H, Renne T
Biomolecules. 2024; 14(8).
PMID: 39199325
PMC: 11352482.
DOI: 10.3390/biom14080937.
Guan Z, Chen J, Liu R, Chen Y, Xing Q, Du Z
Nat Commun. 2023; 14(1):718.
PMID: 36759618
PMC: 9911596.
DOI: 10.1038/s41467-023-36466-4.
Mandala V, Loh D, Shepard S, Geeson M, Sergeyev I, Nocera D
J Am Chem Soc. 2020; 142(43):18407-18421.
PMID: 33075224
PMC: 7755298.
DOI: 10.1021/jacs.0c06335.
Nguyen T, Dziuba N, Lindahl P
Metallomics. 2019; 11(7):1298-1309.
PMID: 31210222
PMC: 7175454.
DOI: 10.1039/c9mt00104b.
Eskes E, Deprez M, Wilms T, Winderickx J
Curr Genet. 2017; 64(1):155-161.
PMID: 28856407
PMC: 5778149.
DOI: 10.1007/s00294-017-0743-2.
Simple Silica Column-Based Method to Quantify Inorganic Polyphosphates in Cartilage and Other Tissues.
Lee W, Gawri R, Shiba T, Ji A, Stanford W, Kandel R
Cartilage. 2017; 9(4):417-427.
PMID: 28357919
PMC: 6139591.
DOI: 10.1177/1947603517690856.
Polyphosphatase PPN1 of Saccharomyces cerevisiae: switching of exopolyphosphatase and endopolyphosphatase activities.
Andreeva N, Trilisenko L, Eldarov M, Kulakovskaya T
PLoS One. 2015; 10(3):e0119594.
PMID: 25742176
PMC: 4350845.
DOI: 10.1371/journal.pone.0119594.
Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway.
Morales Quinones M, Winston J, Stromhaug P
J Biol Chem. 2011; 287(13):10121-10133.
PMID: 22123825
PMC: 3323037.
DOI: 10.1074/jbc.M111.311696.
Polyphosphate Hydrolysis within Acidic Vacuoles in Response to Amine-Induced Alkaline Stress in the Halotolerant Alga Dunaliella salina.
Pick U, Weiss M
Plant Physiol. 1991; 97(3):1234-40.
PMID: 16668514
PMC: 1081147.
DOI: 10.1104/pp.97.3.1234.
Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH(3) across the cytoplasmic membrane.
Soupene E, Ramirez R, Kustu S
Mol Cell Biol. 2001; 21(17):5733-41.
PMID: 11486013
PMC: 87293.
DOI: 10.1128/MCB.21.17.5733-5741.2001.
Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH.
McGrath J, Quinn J
Appl Environ Microbiol. 2000; 66(9):4068-73.
PMID: 10966430
PMC: 92260.
DOI: 10.1128/AEM.66.9.4068-4073.2000.
EmrE, a small Escherichia coli multidrug transporter, protects Saccharomyces cerevisiae from toxins by sequestration in the vacuole.
Yelin R, Rotem D, Schuldiner S
J Bacteriol. 1999; 181(3):949-56.
PMID: 9922260
PMC: 93463.
DOI: 10.1128/JB.181.3.949-956.1999.
Physiological regulation of the derepressible phosphate transporter in Saccharomyces cerevisiae.
Martinez P, Zvyagilskaya R, Allard P, Persson B
J Bacteriol. 1998; 180(8):2253-6.
PMID: 9555914
PMC: 107158.
DOI: 10.1128/JB.180.8.2253-2256.1998.
Mechanism and ion-dependence of in vitro autoactivation of yeast proteinase A: possible implications for compartmentalized activation in vivo.
Van Den Hazel H, Wolff A, Kielland-Brandt M, Winther J
Biochem J. 1997; 326 ( Pt 2):339-44.
PMID: 9291102
PMC: 1218675.
In situ 31P nuclear magnetic resonance for observation of polyphosphate and catabolite responses of chemostat-cultivated Saccharomyces cerevisiae after alkalinization.
Castro C, Meehan A, Koretsky A, Domach M
Appl Environ Microbiol. 1995; 61(12):4448-53.
PMID: 8534109
PMC: 167753.
DOI: 10.1128/aem.61.12.4448-4453.1995.
Chemiosmotic coupling of ion transport in the yeast vacuole: its role in acidification inside organelles.
Wada Y, Anraku Y
J Bioenerg Biomembr. 1994; 26(6):631-7.
PMID: 7721725
DOI: 10.1007/BF00831538.
Assay of vacuolar pH in yeast and identification of acidification-defective mutants.
Preston R, Murphy R, Jones E
Proc Natl Acad Sci U S A. 1989; 86(18):7027-31.
PMID: 2674942
PMC: 297985.
DOI: 10.1073/pnas.86.18.7027.
The fungal vacuole: composition, function, and biogenesis.
Klionsky D, Herman P, Emr S
Microbiol Rev. 1990; 54(3):266-92.
PMID: 2215422
PMC: 372777.
DOI: 10.1128/mr.54.3.266-292.1990.
Methylamine metabolism in Hansenula polymorpha: an in vivo 13C and 31P nuclear magnetic resonance study.
Jones J, Bellion E
J Bacteriol. 1991; 173(16):4959-69.
PMID: 1860814
PMC: 208184.
DOI: 10.1128/jb.173.16.4959-4969.1991.