» Articles » PMID: 33162561

Semiparametric Estimation of Structural Failure Time Models in Continuous-time Processes

Overview
Journal Biometrika
Specialty Public Health
Date 2020 Nov 9
PMID 33162561
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Structural failure time models are causal models for estimating the effect of time-varying treatments on a survival outcome. G-estimation and artificial censoring have been proposed for estimating the model parameters in the presence of time-dependent confounding and administrative censoring. However, most existing methods require manually pre-processing data into regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the computation and inference are challenging due to the nonsmoothness of artificial censoring. We propose a class of continuous-time structural failure time models that respects the continuous-time nature of the underlying data processes. Under a martingale condition of no unmeasured confounding, we show that the model parameters are identifiable from a potentially infinite number of estimating equations. Using the semiparametric efficiency theory, we derive the first semiparametric doubly robust estimators, which are consistent if the model for the treatment process or the failure time model, but not necessarily both, is correctly specified. Moreover, we propose using inverse probability of censoring weighting to deal with dependent censoring. In contrast to artificial censoring, our weighting strategy does not introduce nonsmoothness in estimation and ensures that resampling methods can be used for inference.

Citing Articles

Functional principal component analysis with informative observation times.

Sang P, Kong D, Yang S Biometrika. 2025; 112(1):asae055.

PMID: 39877200 PMC: 11771518. DOI: 10.1093/biomet/asae055.


Estimating spatially varying health effects of wildland fire smoke using mobile health data.

Wu L, Gao C, Yang S, Reich B, Rappold A J R Stat Soc Ser C Appl Stat. 2024; 73(5):1242-1261.

PMID: 39552750 PMC: 11561730. DOI: 10.1093/jrsssc/qlae034.


Multiply robust estimation of marginal structural models in observational studies subject to covariate-driven observations.

Coulombe J, Yang S Biometrics. 2024; 80(3).

PMID: 39011739 PMC: 11250490. DOI: 10.1093/biomtc/ujae065.


Robust inference of conditional average treatment effects using dimension reduction.

Huang M, Yang S Stat Sin. 2022; 32(Suppl):547-567.

PMID: 36415324 PMC: 9678379. DOI: 10.5705/ss.202020.0409.


A treatment-specific marginal structural Cox model for the effect of treatment discontinuation.

Johnson D, Pieper K, Yang S Pharm Stat. 2022; 21(5):988-1004.

PMID: 35357077 PMC: 9481666. DOI: 10.1002/pst.2211.


References
1.
Rotnitzky A, Bergesio A, Farall A . Analysis of quality-of-life adjusted failure time data in the presence of competing, possibly informative, censoring mechanisms. Lifetime Data Anal. 2008; 15(1):1-23. PMC: 3499834. DOI: 10.1007/s10985-008-9088-y. View

2.
Robins J, Blevins D, Ritter G, Wulfsohn M . G-estimation of the effect of prophylaxis therapy for Pneumocystis carinii pneumonia on the survival of AIDS patients. Epidemiology. 1992; 3(4):319-36. DOI: 10.1097/00001648-199207000-00007. View

3.
Bang H, Robins J . Doubly robust estimation in missing data and causal inference models. Biometrics. 2006; 61(4):962-73. DOI: 10.1111/j.1541-0420.2005.00377.x. View

4.
Yang S, Lok J . SENSITIVITY ANALYSIS FOR UNMEASURED CONFOUNDING IN COARSE STRUCTURAL NESTED MEAN MODELS. Stat Sin. 2019; 28(4):1703-1723. PMC: 6407869. DOI: 10.5705/ss.202016.0133. View

5.
Hernan M, Cole S, Margolick J, Cohen M, Robins J . Structural accelerated failure time models for survival analysis in studies with time-varying treatments. Pharmacoepidemiol Drug Saf. 2005; 14(7):477-91. DOI: 10.1002/pds.1064. View