Nash L, Cheung V, Gupta A, Cheung R, He B, Liston M
Eur J Appl Physiol. 2024; .
PMID: 39609289
DOI: 10.1007/s00421-024-05679-w.
Krause A, Reimold N, Embry A, Knight H, Jacobs C, Boan A
PLoS One. 2024; 19(10):e0311727.
PMID: 39378234
PMC: 11460716.
DOI: 10.1371/journal.pone.0311727.
Hadjiosif A, Gibo T, Smith M
Proc Natl Acad Sci U S A. 2024; 121(42):e2411459121.
PMID: 39374383
PMC: 11494333.
DOI: 10.1073/pnas.2411459121.
Cooper R, Smolinski G, Candiotti J, Satpute S, Grindle G, Sparling T
Actuators. 2024; 13(7).
PMID: 39246296
PMC: 11378964.
DOI: 10.3390/act13070236.
Bacek T, Sun M, Liu H, Chen Z, Manzie C, Burdet E
Sci Data. 2024; 11(1):646.
PMID: 38890343
PMC: 11189391.
DOI: 10.1038/s41597-024-03444-4.
Spatiotemporal modulation of a common set of muscle synergies during unpredictable and predictable gait perturbations in older adults.
Brull L, Santuz A, Mersmann F, Bohm S, Schwenk M, Arampatzis A
J Exp Biol. 2024; 227(7).
PMID: 38506185
PMC: 11058090.
DOI: 10.1242/jeb.247271.
Overground Walking With a Transparent Exoskeleton Shows Changes in Spatiotemporal Gait Parameters.
Andrade R, Sapienza S, Mohebbi A, Fabara E, Bonato P
IEEE J Transl Eng Health Med. 2023; 12:182-193.
PMID: 38088995
PMC: 10712666.
DOI: 10.1109/JTEHM.2023.3323381.
Ankle-targeted exosuit resistance increases paretic propulsion in people post-stroke.
Swaminathan K, Porciuncula F, Park S, Kannan H, Erard J, Wendel N
J Neuroeng Rehabil. 2023; 20(1):85.
PMID: 37391851
PMC: 10314463.
DOI: 10.1186/s12984-023-01204-w.
Subsensory stochastic electrical stimulation targeting muscle afferents alters gait control during locomotor adaptations to haptic perturbations.
Severini G, Koenig A, Cajigas I, Lesniewski-Laas N, Niemi J, Bonato P
iScience. 2023; 26(7):107038.
PMID: 37360695
PMC: 10285629.
DOI: 10.1016/j.isci.2023.107038.
Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review.
Hybart R, Ferris D
IEEE Trans Neural Syst Rehabil Eng. 2023; PP.
PMID: 37015690
PMC: 10267288.
DOI: 10.1109/TNSRE.2022.3229563.
Manual stabilization reveals a transient role for balance control during locomotor adaptation.
Park S, Finley J
J Neurophysiol. 2022; 128(4):808-818.
PMID: 35946807
PMC: 9550585.
DOI: 10.1152/jn.00377.2021.
Energy expenditure does not solely explain step length-width choices during walking.
Antos S, Kording K, Gordon K
J Exp Biol. 2022; 225(6).
PMID: 35142362
PMC: 8996813.
DOI: 10.1242/jeb.243104.
Ankle resistance with a unilateral soft exosuit increases plantarflexor effort during pushoff in unimpaired individuals.
Swaminathan K, Park S, Raza F, Porciuncula F, Lee S, Nuckols R
J Neuroeng Rehabil. 2021; 18(1):182.
PMID: 34961521
PMC: 8711150.
DOI: 10.1186/s12984-021-00966-5.
Learning to walk with a wearable robot in 880 simple steps: a pilot study on motor adaptation.
Haufe F, Kober A, Wolf P, Riener R, Xiloyannis M
J Neuroeng Rehabil. 2021; 18(1):157.
PMID: 34724940
PMC: 8561899.
DOI: 10.1186/s12984-021-00946-9.
Forward and backward walking share the same motor modules and locomotor adaptation strategies.
Zych M, Cannariato A, Bonato P, Severini G
Heliyon. 2021; 7(8):e07864.
PMID: 34485742
PMC: 8405989.
DOI: 10.1016/j.heliyon.2021.e07864.
Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation.
Song S, Kidzinski L, Peng X, Ong C, Hicks J, Levine S
J Neuroeng Rehabil. 2021; 18(1):126.
PMID: 34399772
PMC: 8365920.
DOI: 10.1186/s12984-021-00919-y.
Editorial: Somatosensory Integration in Human Movement: Perspectives for Neuromechanics, Modelling and Rehabilitation.
Gizzi L, Vujaklija I, Sartori M, Rohrle O, Severini G
Front Bioeng Biotechnol. 2021; 9:725603.
PMID: 34336813
PMC: 8317207.
DOI: 10.3389/fbioe.2021.725603.
Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges.
Nizamis K, Athanasiou A, Almpani S, Dimitrousis C, Astaras A
Sensors (Basel). 2021; 21(6).
PMID: 33809721
PMC: 8002299.
DOI: 10.3390/s21062084.
Robot-Aided Training of Propulsion During Walking: Effects of Torque Pulses Applied to the Hip and Knee Joints During Stance.
McGrath R, Bodt B, Sergi F
IEEE Trans Neural Syst Rehabil Eng. 2020; 28(12):2923-2932.
PMID: 33232239
PMC: 7924546.
DOI: 10.1109/TNSRE.2020.3039962.
On Nonlinear Regression for Trends in Split-Belt Treadmill Training.
Rashid U, Kumari N, Signal N, Taylor D, Vandal A
Brain Sci. 2020; 10(10).
PMID: 33066492
PMC: 7602156.
DOI: 10.3390/brainsci10100737.