» Articles » PMID: 33157040

Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Nov 6
PMID 33157040
Citations 57
Authors
Affiliations
Soon will be listed here.
Abstract

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.

Citing Articles

ATP deficiency triggers ganoderic acids accumulation via fatty acid β-oxidation pathway in Ganoderma lucidum.

Liu W, Sun Y, Yue S, Kong Y, Cong Q, Lan Y Microb Cell Fact. 2025; 24(1):62.

PMID: 40069729 PMC: 11900599. DOI: 10.1186/s12934-025-02668-2.


The viscoelastic properties of Nicotiana tabacum BY-2 suspension cell lines adapted to high osmolarity.

Skrzypczak T, Pochylski M, Rapp M, Wojtaszek P, Kasprowicz-Maluski A BMC Plant Biol. 2025; 25(1):255.

PMID: 39994523 PMC: 11852555. DOI: 10.1186/s12870-025-06232-3.


Mechanistic origins of temperature scaling in the early embryonic cell cycle.

Rombouts J, Tavella F, Vandervelde A, Phong C, Ferrell J, Ferrell Jr J bioRxiv. 2025; .

PMID: 39763717 PMC: 11703202. DOI: 10.1101/2024.12.24.630245.


A High Spatiotemporal Iontronic Single-Cell Viscometer.

Zhang T, Yu S, Wang B, Xu Y, Shi X, Zhao W Research (Wash D C). 2025; 2022:9859101.

PMID: 39759158 PMC: 11697695. DOI: 10.34133/2022/9859101.


Stress sensing and response through biomolecular condensates in plants.

Peng J, Yu Y, Fang X Plant Commun. 2024; 6(2):101225.

PMID: 39702967 PMC: 11897469. DOI: 10.1016/j.xplc.2024.101225.


References
1.
Seo Y, Kingsley S, Walker G, Mondoux M, Tissenbaum H . Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in . Proc Natl Acad Sci U S A. 2018; 115(12):E2791-E2800. PMC: 5866546. DOI: 10.1073/pnas.1714178115. View

2.
Potma E, de Boeij W, van Haastert P, Wiersma D . Real-time visualization of intracellular hydrodynamics in single living cells. Proc Natl Acad Sci U S A. 2001; 98(4):1577-82. PMC: 29299. DOI: 10.1073/pnas.98.4.1577. View

3.
Delarue M, Brittingham G, Pfeffer S, Surovtsev I, Pinglay S, Kennedy K . mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell. 2018; 174(2):338-349.e20. PMC: 10080728. DOI: 10.1016/j.cell.2018.05.042. View

4.
Hyman A, Weber C, Julicher F . Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014; 30:39-58. DOI: 10.1146/annurev-cellbio-100913-013325. View

5.
Imamura H, Nhat K, Togawa H, Saito K, Iino R, Kato-Yamada Y . Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A. 2009; 106(37):15651-6. PMC: 2735558. DOI: 10.1073/pnas.0904764106. View