6.
Misra S, Hascall V, Markwald R, Ghatak S
. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol. 2015; 6:201.
PMC: 4422082.
DOI: 10.3389/fimmu.2015.00201.
View
7.
Chanmee T, Ontong P, Kimata K, Itano N
. Key Roles of Hyaluronan and Its CD44 Receptor in the Stemness and Survival of Cancer Stem Cells. Front Oncol. 2015; 5:180.
PMC: 4530590.
DOI: 10.3389/fonc.2015.00180.
View
8.
Yan Y, Zuo X, Wei D
. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med. 2015; 4(9):1033-43.
PMC: 4542874.
DOI: 10.5966/sctm.2015-0048.
View
9.
Song J, Im J, Nho R, Han Y, Upadhyaya P, Kassie F
. Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol Carcinog. 2018; 58(3):321-333.
PMC: 11005861.
DOI: 10.1002/mc.22930.
View
10.
Sun S, Wu C, Sheu G, Chang H, Chen M, Lin Y
. Integrin β3 and CD44 levels determine the effects of the OPN-a splicing variant on lung cancer cell growth. Oncotarget. 2016; 7(34):55572-55584.
PMC: 5342437.
DOI: 10.18632/oncotarget.10865.
View
11.
van der Voort R, Manten-Horst E, Smit L, Ostermann E, van den Berg F, Pals S
. Binding of cell-surface expressed CD44 to hyaluronate is dependent on splicing and cell type. Biochem Biophys Res Commun. 1995; 214(1):137-44.
DOI: 10.1006/bbrc.1995.2267.
View
12.
Vugts D, Heuveling D, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen G
. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: Prelude to Phase 1 clinical studies. MAbs. 2014; 6(2):567-75.
PMC: 3984344.
DOI: 10.4161/mabs.27415.
View
13.
Isacke C, Yarwood H
. The hyaluronan receptor, CD44. Int J Biochem Cell Biol. 2002; 34(7):718-21.
DOI: 10.1016/s1357-2725(01)00166-2.
View
14.
Platt V, Szoka Jr F
. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008; 5(4):474-86.
PMC: 2772999.
DOI: 10.1021/mp800024g.
View
15.
Battistini F, Flores-Martin J, Olivera M, Genti-Raimondi S, Manzo R
. Hyaluronan as drug carrier. The in vitro efficacy and selectivity of Hyaluronan-Doxorubicin complexes to affect the viability of overexpressing CD44 receptor cells. Eur J Pharm Sci. 2014; 65:122-9.
DOI: 10.1016/j.ejps.2014.09.008.
View
16.
Cho H, Yoon H, Koo H, Ko S, Shim J, Cho J
. Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J Control Release. 2012; 162(1):111-8.
DOI: 10.1016/j.jconrel.2012.06.011.
View
17.
Lee J, Chung S, Cho H, Kim D
. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging. Biomaterials. 2016; 85:218-31.
DOI: 10.1016/j.biomaterials.2016.01.060.
View
18.
Wang L, Draz M, Wang W, Liao G, Xu Y
. The Quality of In Vivo Upconversion Fluorescence Signals Inside Different Anatomic Structures. J Biomed Nanotechnol. 2015; 11(2):325-33.
DOI: 10.1166/jbn.2015.1947.
View
19.
Pichler B, Kolb A, Nagele T, Schlemmer H
. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010; 51(3):333-6.
DOI: 10.2967/jnumed.109.061853.
View
20.
Blanchet E, Millo C, Martucci V, Maass-Moreno R, Bluemke D, Pacak K
. Integrated whole-body PET/MRI with 18F-FDG, 18F-FDOPA, and 18F-FDA in paragangliomas in comparison with PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol. Clin Nucl Med. 2013; 39(3):243-50.
PMC: 5539761.
DOI: 10.1097/RLU.0000000000000289.
View