» Articles » PMID: 33150860

Traditional Medicinal Plants Against Replication, Maturation and Transmission Targets of SARS-CoV-2: Computational Investigation

Overview
Date 2020 Nov 5
PMID 33150860
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

COVID-19 is an infectious pandemic caused by the SARS-CoV-2 virus. The critical components of SARS-CoV-2 are the spike protein (S-protein) and the main protease (M). M is required for the maturation of the various polyproteins involved in replication and transcription. S-protein helps the SARS-CoV-2 to enter the host cells through the angiotensin-converting enzyme 2 (ACE2). Since ACE2 is required for the binding of SARS-CoV-2 on the host cells, ACE2 inhibitors and blockers have got wider attention, in addition to S-protein and M modulators as potential therapeutics for COVID-19. So far, no specific drugs have shown promising therapeutic potential against COVID-19. The current study was undertaken to evaluate the therapeutic potential of traditional medicinal plants against COVID-19. The bioactives from the medicinal plants, along with standard drugs, were screened for their binding against S-protein, M and ACE2 targets using molecular docking followed by molecular dynamics. Based on the higher binding affinity compared with standard drugs, bioactives were selected and further analyzed for their pharmacological properties such as drug-likeness, ADME/-test, biological activities using tools. The binding energies of several bioactives analyzed with target proteins were relatively comparable and even better than the standard drugs. Based on Lipinski factors and lower binding energies, seven bioactives were further analyzed for their pharmacological and biological characteristics. The selected bioactives were found to have lower toxicity with a higher GI absorption rate and potent anti-inflammatory and anti-viral activities against targets of COVID-19. Therefore, the bioactives from these medicinal plants can be further developed as phytopharmaceuticals for the effective treatment of COVID-19.Communicated by Ramaswamy H. Sarma.

Citing Articles

Ethnobotanical study and vulnerability of medicinal plants used against the symptoms of COVID-19 in the Lomié subdivision, East Region of Cameroon.

Abdel K, Mala W, Chimi P, Funwi F, Engoulou C, Messi Effa J Heliyon. 2024; 10(7):e28247.

PMID: 38590891 PMC: 10999872. DOI: 10.1016/j.heliyon.2024.e28247.


Multifaceted roles of plant derived small molecule inhibitors on replication cycle of SARS-CoV-2.

Uma Reddy B, Routhu N, Kumar A Microb Pathog. 2022; 168:105512.

PMID: 35381324 PMC: 8976571. DOI: 10.1016/j.micpath.2022.105512.


Screening S protein - ACE2 blockers from natural products: Strategies and advances in the discovery of potential inhibitors of COVID-19.

Ma L, Liu H, Liu X, Yuan X, Xu C, Wang F Eur J Med Chem. 2021; 226:113857.

PMID: 34628234 PMC: 8489279. DOI: 10.1016/j.ejmech.2021.113857.


Potential antiviral properties of antiplatelet agents against SARS-CoV-2 infection: an in silico perspective.

Abosheasha M, El-Gowily A, Elfiky A J Thromb Thrombolysis. 2021; 53(2):273-281.

PMID: 34510337 PMC: 8435103. DOI: 10.1007/s11239-021-02558-5.


β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19.

Jha N, Sharma C, Hashiesh H, Arunachalam S, Meeran M, Javed H Front Pharmacol. 2021; 12:590201.

PMID: 34054510 PMC: 8163236. DOI: 10.3389/fphar.2021.590201.