» Articles » PMID: 33139955

Proximity Labeling in Mammalian Cells with TurboID and Split-TurboID

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2020 Nov 3
PMID 33139955
Citations 152
Authors
Affiliations
Soon will be listed here.
Abstract

This protocol describes the use of TurboID and split-TurboID in proximity labeling applications for mapping protein-protein interactions and subcellular proteomes in live mammalian cells. TurboID is an engineered biotin ligase that uses ATP to convert biotin into biotin-AMP, a reactive intermediate that covalently labels proximal proteins. Optimized using directed evolution, TurboID has substantially higher activity than previously described biotin ligase-related proximity labeling methods, such as BioID, enabling higher temporal resolution and broader application in vivo. Split-TurboID consists of two inactive fragments of TurboID that can be reconstituted through protein-protein interactions or organelle-organelle interactions, which can facilitate greater targeting specificity than full-length enzymes alone. Proteins biotinylated by TurboID or split-TurboID are then enriched with streptavidin beads and identified by mass spectrometry. Here, we describe fusion construct design and characterization (variable timing), proteomic sample preparation (5-7 d), mass spectrometric data acquisition (2 d), and proteomic data analysis (1 week).

Citing Articles

Spatiotemporally resolved mapping of extracellular proteomes via in vivo-compatible TyroID.

Zhang Z, Wang Y, Lu W, Wang X, Guo H, Pan X Nat Commun. 2025; 16(1):2553.

PMID: 40089463 DOI: 10.1038/s41467-025-57767-w.


LATS1-modulated ZBTB20 perturbing cartilage matrix homeostasis contributes to early-stage osteoarthritis.

Hao X, Zhao J, Jia L, Ding G, Liang X, Su F Bone Res. 2025; 13(1):33.

PMID: 40069162 PMC: 11897192. DOI: 10.1038/s41413-025-00414-3.


Comprehensive dataset of interactors for the entire PARP family using TurboID proximity labeling.

Zheng J, Deng Y, Fang C, Xiong S, Zhu X, Wu W Sci Data. 2025; 12(1):405.

PMID: 40057523 PMC: 11890743. DOI: 10.1038/s41597-025-04722-5.


Condensation of ZFP207 and U1 snRNP promotes spliceosome assembly.

Zhou Y, Tong C, Shi Z, Zhang Y, Xiong X, Shen X Nat Struct Mol Biol. 2025; .

PMID: 40050462 DOI: 10.1038/s41594-025-01501-z.


CTDP1 and RPB7 stabilize Pol II and permit reinitiation.

Zheng H, Xu Q, Ji D, Yang B, Ji X Nat Commun. 2025; 16(1):2161.

PMID: 40038320 PMC: 11880454. DOI: 10.1038/s41467-025-57513-2.


References
1.
Huber L, Pfaller K, Vietor I . Organelle proteomics: implications for subcellular fractionation in proteomics. Circ Res. 2003; 92(9):962-8. DOI: 10.1161/01.RES.0000071748.48338.25. View

2.
Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Wilm M . The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 2001; 24(3):218-29. DOI: 10.1006/meth.2001.1183. View

3.
Stasyk T, Huber L . Zooming in: fractionation strategies in proteomics. Proteomics. 2004; 4(12):3704-16. DOI: 10.1002/pmic.200401048. View

4.
Lee W, Lee K . Applications of affinity chromatography in proteomics. Anal Biochem. 2003; 324(1):1-10. DOI: 10.1016/j.ab.2003.08.031. View

5.
Gingras A, Abe K, Raught B . Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr Opin Chem Biol. 2018; 48:44-54. DOI: 10.1016/j.cbpa.2018.10.017. View