» Articles » PMID: 33127951

Machine Learning Enables Improved Runtime and Precision for Bio-loggers on Seabirds

Overview
Journal Commun Biol
Specialty Biology
Date 2020 Oct 31
PMID 33127951
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals' lives, including their behaviours, physiology, social interactions, and external environment. However, bio-loggers have short runtimes when collecting data from resource-intensive (high-cost) sensors. This study proposes using AI on board video-loggers in order to use low-cost sensors (e.g., accelerometers) to automatically detect and record complex target behaviours that are of interest, reserving their devices' limited resources for just those moments. We demonstrate our method on bio-loggers attached to seabirds including gulls and shearwaters, where it captured target videos with 15 times the precision of a baseline periodic-sampling method. Our work will provide motivation for more widespread adoption of AI in bio-loggers, helping us to shed light onto until now hidden aspects of animals' lives.

Citing Articles

A benchmark for computational analysis of animal behavior, using animal-borne tags.

Hoffman B, Cusimano M, Baglione V, Canestrari D, Chevallier D, DeSantis D Mov Ecol. 2024; 12(1):78.

PMID: 39695785 PMC: 11654173. DOI: 10.1186/s40462-024-00511-8.


Mapping spatial memory in teleosts: a new Frontier in neural logging techniques.

Takahashi S, Sawatani F, Ide K, Abe T, Kitagawa T, Makiguchi Y Front Physiol. 2024; 15:1499058.

PMID: 39568545 PMC: 11576370. DOI: 10.3389/fphys.2024.1499058.


Time synchronisation for millisecond-precision on bio-loggers.

Wild T, Wilbs G, Dechmann D, Kohles J, Linek N, Mattingly S Mov Ecol. 2024; 12(1):71.

PMID: 39468685 PMC: 11520525. DOI: 10.1186/s40462-024-00512-7.


Hidden rivals: the negative impacts of dolphinfish on seabird foraging behaviour.

Koyama S, Goto Y, Furukawa S, Maekawa T, Yoda K Biol Lett. 2024; 20(8):20240223.

PMID: 39106947 PMC: 11303019. DOI: 10.1098/rsbl.2024.0223.


Machine learning approaches for biomolecular, biophysical, and biomaterials research.

Rickert C, Lieleg O Biophys Rev (Melville). 2024; 3(2):021306.

PMID: 38505413 PMC: 10914139. DOI: 10.1063/5.0082179.


References
1.
Hussey N, Kessel S, Aarestrup K, Cooke S, Cowley P, Fisk A . ECOLOGY. Aquatic animal telemetry: A panoramic window into the underwater world. Science. 2015; 348(6240):1255642. DOI: 10.1126/science.1255642. View

2.
Watanabe Y, Takahashi A . Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad Sci U S A. 2013; 110(6):2199-204. PMC: 3568313. DOI: 10.1073/pnas.1216244110. View

3.
Cox S, Orgeret F, Gesta M, Rodde C, Heizer I, Weimerskirch H . Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol Evol. 2018; 9(1):64-77. PMC: 5812097. DOI: 10.1111/2041-210X.12845. View

4.
Williams H, Taylor L, Benhamou S, Bijleveld A, Clay T, de Grissac S . Optimizing the use of biologgers for movement ecology research. J Anim Ecol. 2019; 89(1):186-206. PMC: 7041970. DOI: 10.1111/1365-2656.13094. View

5.
Kays R, Crofoot M, Jetz W, Wikelski M . ECOLOGY. Terrestrial animal tracking as an eye on life and planet. Science. 2015; 348(6240):aaa2478. DOI: 10.1126/science.aaa2478. View