» Articles » PMID: 331261

Structural Organization of Complexes of Transfer RNAs with Aminoacyl Transfer RNA Synthetases

Overview
Specialty Biochemistry
Date 1977 Jan 1
PMID 331261
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

A variety of experimental data on synthetase-tRNA interactions are examined. Although these data previously had no direct explanation when viewed only in terms of the tRNA cloverleaf diagram, they can be rationalized according to a simple proposal that takes account of the three dimensional structure of tRNA. It is proposed that a major part of the binding site for most or all synthetases is along and around the diagonal side of the tRNA structure, which contains the acceptor stem, dihydrouridine stem, and anticodon. This side of the tRNA molecule contains structural features likely to be common for all tRNAs. Depending on the system, an enzyme may span a small part or all of the region of this side of the molecule. Interactions with other parts of the structure may also occur in a manner that varies from complex to complex. These interactions may be determined, in part, by the angle at which the diagonal side of the flat tRNA molecule is inserted onto the surface of the synthetase.

Citing Articles

Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures.

Putz J, Dupuis B, Sissler M, Florentz C RNA. 2007; 13(8):1184-90.

PMID: 17585048 PMC: 1924894. DOI: 10.1261/rna.588407.


The early history of tRNA recognition by aminoacyl-tRNA synthetases.

Giege R J Biosci. 2007; 31(4):477-88.

PMID: 17206068 DOI: 10.1007/BF02705187.


The tRNA-like structure of turnip yellow mosaic virus RNA: structural organization of the last 159 nucleotides from the 3' OH terminus.

Florentz C, Briand J, Romby P, Hirth L, Ebel J, Glege R EMBO J. 1982; 1(2):269-76.

PMID: 16453415 PMC: 553031. DOI: 10.1002/j.1460-2075.1982.tb01158.x.


Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase.

Jia J, Xu F, Chen X, Chen L, Jin Y, Wang D Biochem J. 2002; 365(Pt 3):749-56.

PMID: 11966471 PMC: 1222715. DOI: 10.1042/BJ20020141.


Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.

Rogers M, Adachi T, Inokuchi H, Soll D Proc Natl Acad Sci U S A. 1994; 91(1):291-5.

PMID: 7506418 PMC: 42933. DOI: 10.1073/pnas.91.1.291.


References
1.
Squires C, Carbon J . Normal and mutant glycine transfer RNAs. Nat New Biol. 1971; 233(43):274-7. DOI: 10.1038/newbio233274a0. View

2.
STAEHELIN M, Rogg H, Baguley B, GINSBERG T, Wehrli W . Structure of a mammalian serine tRNA. Nature. 1968; 219(5161):1363-5. DOI: 10.1038/2191363a0. View

3.
Giege R, Kern D, Ebel J, Grosjean H, de Henau S, CHANTRENNE H . Incorrect aminoacylations involving tRNAs or valyl-tRNA synthetase from Bacillus stearothermophilus. Eur J Biochem. 1974; 45(2):351-62. DOI: 10.1111/j.1432-1033.1974.tb03560.x. View

4.
Carre D, Thomas G, Favre A . Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases. Biochimie. 1974; 56(8):1089-101. DOI: 10.1016/s0300-9084(74)80097-0. View

5.
QUIGLEY G, Rich A . Structural domains of transfer RNA molecules. Science. 1976; 194(4267):796-806. DOI: 10.1126/science.790568. View