» Articles » PMID: 33125889

Molecular Basis of Chemotactile Sensation in Octopus

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Oct 30
PMID 33125889
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Animals display wide-ranging evolutionary adaptations based on their ecological niche. Octopuses explore the seafloor with their flexible arms using a specialized "taste by touch" system to locally sense and respond to prey-derived chemicals and movement. How the peripherally distributed octopus nervous system mediates relatively autonomous arm behavior is unknown. Here, we report that octopus arms use a family of cephalopod-specific chemotactile receptors (CRs) to detect poorly soluble natural products, thereby defining a form of contact-dependent, aquatic chemosensation. CRs form discrete ion channel complexes that mediate the detection of diverse stimuli and transduction of specific ionic signals. Furthermore, distinct chemo- and mechanosensory cells exhibit specific receptor expression and electrical activities to support peripheral information coding and complex chemotactile behaviors. These findings demonstrate that the peripherally distributed octopus nervous system is a key site for signal processing and highlight how molecular and anatomical features synergistically evolve to suit an animal's environmental context.

Citing Articles

Molecular and morphological circuitry of the octopus sucker ganglion.

Olson C, Moorjani A, Ragsdale C bioRxiv. 2025; .

PMID: 39990388 PMC: 11844415. DOI: 10.1101/2025.02.10.637560.


Lineage-Specific Class-A GPCR Dynamics Reflect Diverse Chemosensory Adaptations in Lophotrochozoa.

Nath R, Panda B, Rakesh S, Krishnan A Mol Biol Evol. 2025; 42(3).

PMID: 39943858 PMC: 11886862. DOI: 10.1093/molbev/msaf042.


Neuronal segmentation in cephalopod arms.

Olson C, Schulz N, Ragsdale C Nat Commun. 2025; 16(1):443.

PMID: 39814765 PMC: 11736069. DOI: 10.1038/s41467-024-55475-5.


Biomimetic Contact Behavior Inspired Tactile Sensing Array with Programmable Microdomes Pattern by Scalable and Consistent Fabrication.

Chen X, Luo Y, Chen Y, Li S, Deng S, Wang B Adv Sci (Weinh). 2024; 11(43):e2408082.

PMID: 39319637 PMC: 11578381. DOI: 10.1002/advs.202408082.


Finding food: how generalist predators use contact-chemosensory information to guide prey preferences.

Zimmer R, Ferrier G, Zimmer C J Exp Biol. 2024; 227(19).

PMID: 39246153 PMC: 11491814. DOI: 10.1242/jeb.247523.


References
1.
Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng L . Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature. 2012; 493(7431):221-5. PMC: 3917554. DOI: 10.1038/nature11685. View

2.
Fouke K, Rhodes H . Electrophysiological and Motor Responses to Chemosensory Stimuli in Isolated Cephalopod Arms. Biol Bull. 2020; 238(1):1-11. DOI: 10.1086/707837. View

3.
Bray N, Pimentel H, Melsted P, Pachter L . Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525-7. DOI: 10.1038/nbt.3519. View

4.
Joseph R, Carlson J . Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet. 2015; 31(12):683-695. PMC: 4674303. DOI: 10.1016/j.tig.2015.09.005. View

5.
Derby C . Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol Bull. 2007; 213(3):274-89. DOI: 10.2307/25066645. View