» Articles » PMID: 33121431

CosinorPy: a Python Package for Cosinor-based Rhythmometry

Overview
Publisher Biomed Central
Specialty Biology
Date 2020 Oct 30
PMID 33121431
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.

Results: We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.

Conclusion: CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.

Citing Articles

Haematology dimension reduction, a large scale application to regular care haematology data.

Joosse H, Chumsaeng-Reijers C, Huisman A, Hoefer I, van Solinge W, Haitjema S BMC Med Inform Decis Mak. 2025; 25(1):75.

PMID: 39939843 PMC: 11823074. DOI: 10.1186/s12911-025-02899-8.


Challenges and opportunities for statistical power and biomarker identification arising from rhythmic variation in proteomics.

Spick M, Isherwood C, Gethings L, Hughes C, Daly M, Hassanin H NPJ Biol Timing Sleep. 2025; 2(1):3.

PMID: 39872604 PMC: 11762406. DOI: 10.1038/s44323-024-00020-2.


The genetically programmed rhythmic alteration of diurnal gene expression in the aged leaves.

Jung S, Kim H, Lee J, Kang M, Kim J, Kim J Front Plant Sci. 2024; 15:1481682.

PMID: 39559769 PMC: 11570267. DOI: 10.3389/fpls.2024.1481682.


Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats.

Shiba A, de Goede P, Tandari R, Foppen E, Korpel N, Coopmans T Neurobiol Sleep Circadian Rhythms. 2024; 17:100106.

PMID: 39387098 PMC: 11462373. DOI: 10.1016/j.nbscr.2024.100106.


Extracting regulatory active chromatin footprint from cell-free DNA.

Lai K, Dilger K, Cunningham R, Lam K, Boquiren R, Truong K Commun Biol. 2024; 7(1):1086.

PMID: 39232115 PMC: 11375110. DOI: 10.1038/s42003-024-06769-3.


References
1.
Ruben M, Wu G, Smith D, Schmidt R, Francey L, Lee Y . A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med. 2018; 10(458). PMC: 8961342. DOI: 10.1126/scitranslmed.aat8806. View

2.
Andreani T, Itoh T, Yildirim E, Hwangbo D, Allada R . Genetics of Circadian Rhythms. Sleep Med Clin. 2015; 10(4):413-21. PMC: 4758938. DOI: 10.1016/j.jsmc.2015.08.007. View

3.
Thaben P, Westermark P . Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014; 29(6):391-400. PMC: 4266694. DOI: 10.1177/0748730414553029. View

4.
Zhang R, Lahens N, Ballance H, Hughes M, Hogenesch J . A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014; 111(45):16219-24. PMC: 4234565. DOI: 10.1073/pnas.1408886111. View

5.
Hutchison A, Maienschein-Cline M, Chiang A, Tabei S, Gudjonson H, Bahroos N . Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data. PLoS Comput Biol. 2015; 11(3):e1004094. PMC: 4368642. DOI: 10.1371/journal.pcbi.1004094. View