» Articles » PMID: 33116124

Fast Site-to-site Electron Transfer of High-entropy Alloy Nanocatalyst Driving Redox Electrocatalysis

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Oct 29
PMID 33116124
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) PtNiFeCoCu nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The PtNiFeCoCu/C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm, excellent activity (10.96 A mg at -0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes.

Citing Articles

Spectra-based clustering of high-entropy alloy catalysts: improved insight over use of atomic structure.

Li H, Zhou D, Smith P, Sharman E, Xiao H, Wang S Chem Sci. 2025; 16(11):4646-4653.

PMID: 39935498 PMC: 11808395. DOI: 10.1039/d4sc06552b.


Overcoming Energy-Scaling Barriers: Efficient Ammonia Electrosynthesis on High-Entropy Alloy Catalysts.

Yin D, Li B, Gao B, Chen M, Chen D, Meng Y Adv Mater. 2025; 37(9):e2415739.

PMID: 39811995 PMC: 11881671. DOI: 10.1002/adma.202415739.


Electronic structure modulation of ultrathin PtRuMoCoNi high-entropy alloy nanowires for boosting peroxidase-like activity and sensitive colorimetric determination of isoniazid and hydrazine.

Li J, Wang A, Song P, Feng J, Zhou Q, Cheang T Mikrochim Acta. 2025; 192(2):82.

PMID: 39810035 DOI: 10.1007/s00604-024-06892-2.


High-entropy alloys catalyzing polymeric transformation of water pollutants with remarkably improved electron utilization efficiency.

Yao Z, Chen Y, Wang X, Hu K, Ren S, Zhang J Nat Commun. 2025; 16(1):148.

PMID: 39747918 PMC: 11697309. DOI: 10.1038/s41467-024-55627-7.


One-Step Synthesis Strategy for a Platinum-Based Alloy Catalyst Designed via Crystal-Structure Prediction.

Yan D, Kong L, Xu B, Yang B Molecules. 2024; 29(23).

PMID: 39683794 PMC: 11642978. DOI: 10.3390/molecules29235634.


References
1.
Xiong L, Sun Z, Zhang X, Zhao L, Huang P, Chen X . Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect. Nat Commun. 2019; 10(1):3782. PMC: 6706449. DOI: 10.1038/s41467-019-11766-w. View

2.
Koo W, Millstone J, Weiss P, Kim I . The Design and Science of Polyelemental Nanoparticles. ACS Nano. 2020; 14(6):6407-6413. DOI: 10.1021/acsnano.0c03993. View

3.
Seh Z, Kibsgaard J, Dickens C, Chorkendorff I, Norskov J, Jaramillo T . Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017; 355(6321). DOI: 10.1126/science.aad4998. View

4.
Xie P, Yao Y, Huang Z, Liu Z, Zhang J, Li T . Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat Commun. 2019; 10(1):4011. PMC: 6728353. DOI: 10.1038/s41467-019-11848-9. View

5.
Chen P, Liu X, Hedrick J, Xie Z, Wang S, Lin Q . Polyelemental nanoparticle libraries. Science. 2016; 352(6293):1565-9. DOI: 10.1126/science.aaf8402. View