» Articles » PMID: 33112729

Archaeal Transcription

Overview
Journal Transcription
Specialty Molecular Biology
Date 2020 Oct 28
PMID 33112729
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.

Citing Articles

High hydrostatic pressure promotes gene transcription via a cystathionine-β-synthase domain-containing protein in the hyperthermophilic archaeon Pyrococcus yayanosii.

Li C, Li S, Song Q, Da L, Xu J Nucleic Acids Res. 2025; 53(1.

PMID: 39777464 PMC: 11705074. DOI: 10.1093/nar/gkae1289.


Sequencing-based analysis of microbiomes.

Pinto Y, Bhatt A Nat Rev Genet. 2024; 25(12):829-845.

PMID: 38918544 DOI: 10.1038/s41576-024-00746-6.


The Archaeal Cell Cycle.

Cezanne A, Foo S, Kuo Y, Baum B Annu Rev Cell Dev Biol. 2024; 40(1):1-23.

PMID: 38748857 PMC: 7617429. DOI: 10.1146/annurev-cellbio-111822-120242.


Archaeal histone-based chromatin structures regulate transcription elongation rates.

Wenck B, Vickerman R, Burkhart B, Santangelo T Commun Biol. 2024; 7(1):236.

PMID: 38413771 PMC: 10899632. DOI: 10.1038/s42003-024-05928-w.


Putative nucleotide-based second messengers in archaea.

van der Does C, Braun F, Ren H, Albers S Microlife. 2023; 4:uqad027.

PMID: 37305433 PMC: 10249747. DOI: 10.1093/femsml/uqad027.


References
1.
Takemata N, Samson R, Bell S . Physical and Functional Compartmentalization of Archaeal Chromosomes. Cell. 2019; 179(1):165-179.e18. PMC: 6756186. DOI: 10.1016/j.cell.2019.08.036. View

2.
Deighan P, Hochschild A . Conformational toggle triggers a modulator of RNA polymerase activity. Trends Biochem Sci. 2006; 31(8):424-6. DOI: 10.1016/j.tibs.2006.06.004. View

3.
Le T, Yang Y, Tan C, Suhanovsky M, Fulbright Jr R, Inman J . Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism. Cell. 2017; 172(1-2):344-357.e15. PMC: 5766421. DOI: 10.1016/j.cell.2017.11.017. View

4.
Jun S, Hirata A, Kanai T, Santangelo T, Imanaka T, Murakami K . The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nat Commun. 2014; 5:5132. PMC: 4657547. DOI: 10.1038/ncomms6132. View

5.
Kanai T, Akerboom J, Takedomi S, van de Werken H, Blombach F, van der Oost J . A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes. J Biol Chem. 2007; 282(46):33659-33670. DOI: 10.1074/jbc.M703424200. View