» Articles » PMID: 33112350

Multifunctional Nanoparticles for Targeting the Tumor Microenvironment to Improve Synergistic Drug Combinations and Cancer Treatment Effects

Overview
Journal J Mater Chem B
Date 2020 Oct 28
PMID 33112350
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Docetaxel-based chemotherapy for prostate cancer is the clinical standard of care. However, nonspecific targeting, multiple drug resistance, and adverse side effects are common obstacles. Various natural compounds, including epigallocatechin-3-gallate (EGCG) in combination with taxane, have the potential to be developed as anticancer therapeutics. Although synergistic hydrophobic-hydrophilic combination drugs have been used with some success, the main drawbacks of this approach are poor bioavailability, unfavorable pharmacokinetics, and low tissue distribution. To improve their synergistic effect and overcome limitations, we encapsulated EGCG and low-dose docetaxel within TPGS-conjugated hyaluronic acid and fucoidan-based nanoparticles. This approach might facilitate simultaneous target-specific markers at the edge and center of the tumor and then might increase intratumoral drug accumulation. Additionally, the successful release of bioactive combination drugs was regulated by the pH-sensitive nanoparticles and internalization into prostate cancer cells through CD44 and P-selectin ligand recognition, and the inhibition of cell growth via induced G2/M phase cell cycle arrest was observed in in vitro study. In in vivo studies, treatment with cancer-targeted combination drug-loaded nanoparticles significantly attenuated tumor growth and increased M30 protein expression without causing organ damage. Overall, the multifunctional nanoparticle system improved the drugs' synergistic effect, indicating great potential in its development as a prostate cancer treatment.

Citing Articles

Enhancement of apoptosis in Caco-2, Hep-G2, and HT29 cancer cell lines following exposure to peptides.

Shahrivar F, Sadraei J, Pirestani M, Ahmadpour E Drug Target Insights. 2024; 18:70-77.

PMID: 39355763 PMC: 11443429. DOI: 10.33393/dti.2024.3177.


Epigallocatechin-3-gallate at the nanoscale: a new strategy for cancer treatment.

Sun W, Yang Y, Wang C, Liu M, Wang J, Qiao S Pharm Biol. 2024; 62(1):676-690.

PMID: 39345207 PMC: 11443569. DOI: 10.1080/13880209.2024.2406779.


EpCAM-targeted betulinic acid analogue nanotherapy improves therapeutic efficacy and induces anti-tumorigenic immune response in colorectal cancer tumor microenvironment.

Dutta D, Hoque A, Paul B, Park J, Chowdhury C, Quadir M J Biomed Sci. 2024; 31(1):81.

PMID: 39164686 PMC: 11334571. DOI: 10.1186/s12929-024-01069-8.


Nanoparticles for Augmenting Therapeutic Potential and Alleviating the Effect of Di(2-ethylhexyl) Phthalate on Gastric Cancer.

Huang H, Chen K, Liao H, Wang L, Peng S, Lai C ACS Appl Mater Interfaces. 2024; 16(15):18285-18299.

PMID: 38574184 PMC: 11040586. DOI: 10.1021/acsami.3c15976.


Combination of Kaempferol and Docetaxel Induces Autophagy in Prostate Cancer Cells In Vitro and In Vivo.

Zhou Q, Fang G, Pang Y, Wang X Int J Mol Sci. 2023; 24(19).

PMID: 37833967 PMC: 10572510. DOI: 10.3390/ijms241914519.