» Articles » PMID: 33106680

Genetically Modified Mouse Models to Help Fight COVID-19

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2020 Oct 27
PMID 33106680
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The research community is in a race to understand the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to repurpose currently available antiviral drugs and to develop new therapies and vaccines against coronavirus disease 2019 (COVID-19). One major challenge in achieving these goals is the paucity of suitable preclinical animal models. Mice constitute ~70% of all the laboratory animal species used in biomedical research. Unfortunately, SARS-CoV-2 infects mice only if they have been genetically modified to express human ACE2. The inherent resistance of wild-type mice to SARS-CoV-2, combined with a wealth of genetic tools that are available only for modifying mice, offers a unique opportunity to create a versatile set of genetically engineered mouse models useful for COVID-19 research. We propose three broad categories of these models and more than two dozen designs that may be useful for SARS-CoV-2 research and for fighting COVID-19.

Citing Articles

Human ACE2 Gene Replacement Mice Support SARS-CoV-2 Viral Replication and Nonlethal Disease Progression.

Thiede J, Dick J, Jarjour N, Krishna V, Qian L, Sangala J Immunohorizons. 2024; 8(9):712-720.

PMID: 39287601 PMC: 11447706. DOI: 10.4049/immunohorizons.2400030.


Neuromuscular defects after infection with a beta coronavirus in mice.

Rossi L, Santos K, Mota B, Pimenta J, Oliveira B, Machado C Neurochem Int. 2023; 169:105567.

PMID: 37348761 PMC: 10281698. DOI: 10.1016/j.neuint.2023.105567.


Development of HPV16 mouse and dog models for more accurate prediction of human vaccine efficacy.

Totain E, Lindner L, Martin N, Misseri Y, Iche A, Birling M Lab Anim Res. 2023; 39(1):14.

PMID: 37308929 PMC: 10258489. DOI: 10.1186/s42826-023-00166-3.


Ethical considerations regarding animal experimentation.

Kiani A, Pheby D, Henehan G, Brown R, Sieving P, Sykora P J Prev Med Hyg. 2022; 63(2 Suppl 3):E255-E266.

PMID: 36479489 PMC: 9710398. DOI: 10.15167/2421-4248/jpmh2022.63.2S3.2768.


Cell and Animal Models for SARS-CoV-2 Research.

Bestion E, Halfon P, Mezouar S, Mege J Viruses. 2022; 14(7).

PMID: 35891487 PMC: 9319816. DOI: 10.3390/v14071507.


References
1.
Tseng C, Huang C, Newman P, Wang N, Narayanan K, Watts D . Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J Virol. 2006; 81(3):1162-73. PMC: 1797529. DOI: 10.1128/JVI.01702-06. View

2.
Parasa S, Desai M, Chandrasekar V, Patel H, Kennedy K, Roesch T . Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020; 3(6):e2011335. PMC: 7290409. DOI: 10.1001/jamanetworkopen.2020.11335. View

3.
Jelinek M, Wallach C, Ehmke H, Schwoerer A . Genetic background dominates the susceptibility to ventricular arrhythmias in a murine model of β-adrenergic stimulation. Sci Rep. 2018; 8(1):2312. PMC: 5797149. DOI: 10.1038/s41598-018-20792-5. View

4.
Menachery V, Yount Jr B, Sims A, Debbink K, Agnihothram S, Gralinski L . SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A. 2016; 113(11):3048-53. PMC: 4801244. DOI: 10.1073/pnas.1517719113. View

5.
Saito Y, Kametani Y, Hozumi K, Mochida N, Ando K, Ito M . The in vivo development of human T cells from CD34(+) cells in the murine thymic environment. Int Immunol. 2002; 14(10):1113-24. DOI: 10.1093/intimm/dxf087. View