» Articles » PMID: 33094123

Polychromatic Digital Holographic Microscopy: a Quasicoherent-noise-free Imaging Technique to Explore the Connectivity of Living Neuronal Networks

Overview
Journal Neurophotonics
Date 2020 Oct 23
PMID 33094123
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Over the past decade, laser-based digital holographic microscopy (DHM), an important approach in the field of quantitative-phase imaging techniques, has become a significant label-free modality for live-cell imaging and used particularly in cellular neuroscience. However, coherent noise remains a major drawback for DHM, significantly limiting the possibility to visualize neuronal processes and precluding important studies on neuronal connectivity. : The goal is to develop a DHM technique able to sharply visualize thin neuronal processes. : By combining a wavelength-tunable light source with the advantages of hologram numerical reconstruction of DHM, an approach called polychromatic DHM (P-DHM), providing OPD images with drastically decreased coherent noise, was developed. : When applied to cultured neuronal networks with an air microscope objective ( , 0.8 NA), P-DHM shows a coherent noise level typically corresponding to 1 nm at the single-pixel scale, in agreement with the -law, allowing to readily visualize the -wide thin neuronal processes with a signal-to-noise ratio of . : Therefore, P-DHM represents a very promising label-free technique to study neuronal connectivity and its development, including neurite outgrowth, elongation, and branching.

Citing Articles

Quantitative phase microscopies: accuracy comparison.

Chaumet P, Bon P, Maire G, Sentenac A, Baffou G Light Sci Appl. 2024; 13(1):288.

PMID: 39394163 PMC: 11470049. DOI: 10.1038/s41377-024-01619-7.


Understanding the nervous system: lessons from Frontiers in Neurophotonics.

De Koninck Y, Alonso J, Bancelin S, Beique J, Belanger E, Bouchard C Neurophotonics. 2024; 11(1):014415.

PMID: 38545127 PMC: 10972537. DOI: 10.1117/1.NPh.11.1.014415.


Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine.

Nguyen T, Pradeep S, Judson-Torres R, Reed J, Teitell M, Zangle T ACS Nano. 2022; 16(8):11516-11544.

PMID: 35916417 PMC: 10112851. DOI: 10.1021/acsnano.1c11507.


Ultra-parallel label-free optophysiology of neural activity.

Iyer R, Liu Y, Renteria C, Tibble B, Choi H, Zurauskas M iScience. 2022; 25(5):104307.

PMID: 35602935 PMC: 9114528. DOI: 10.1016/j.isci.2022.104307.


Roadmap on Digital Holography-Based Quantitative Phase Imaging.

Balasubramani V, Kujawinska M, Allier C, Anand V, Cheng C, Depeursinge C J Imaging. 2021; 7(12).

PMID: 34940719 PMC: 8703719. DOI: 10.3390/jimaging7120252.

References
1.
Montresor S, Picart P . Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt Express. 2016; 24(13):14322-43. DOI: 10.1364/OE.24.014322. View

2.
Jourdain P, Pavillon N, Moratal C, Boss D, Rappaz B, Depeursinge C . Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci. 2011; 31(33):11846-54. PMC: 6623187. DOI: 10.1523/JNEUROSCI.0286-11.2011. View

3.
Bianco V, Memmolo P, Leo M, Montresor S, Distante C, Paturzo M . Strategies for reducing speckle noise in digital holography. Light Sci Appl. 2019; 7:48. PMC: 6106996. DOI: 10.1038/s41377-018-0050-9. View

4.
Marquet P, Rappaz B, Magistretti P, Cuche E, Emery Y, Colomb T . Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett. 2005; 30(5):468-70. DOI: 10.1364/ol.30.000468. View

5.
Ferraro P, de Nicola S, Finizio A, Coppola G, Grilli S, Magro C . Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl Opt. 2003; 42(11):1938-46. DOI: 10.1364/ao.42.001938. View