» Articles » PMID: 33093807

Evolution of Sequence-based Bioinformatics Tools for Protein-protein Interaction Prediction

Overview
Journal Curr Genomics
Date 2020 Oct 23
PMID 33093807
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Protein-protein interactions (PPIs) are the physical connections between two or more proteins electrostatic forces or hydrophobic effects. Identification of the PPIs is pivotal, which contributes to many biological processes including protein function, disease incidence, and therapy design. The experimental identification of PPIs high-throughput technology is time-consuming and expensive. Bioinformatics approaches are expected to solve such restrictions. In this review, our main goal is to provide an inclusive view of the existing sequence-based computational prediction of PPIs. Initially, we briefly introduce the currently available PPI databases and then review the state-of-the-art bioinformatics approaches, working principles, and their performances. Finally, we discuss the caveats and future perspective of the next generation algorithms for the prediction of PPIs.

Citing Articles

Protein features fusion using attributed network embedding for predicting protein-protein interaction.

Cao M, Zainudin S, Daud K BMC Genomics. 2024; 25(1):466.

PMID: 38741045 PMC: 11092193. DOI: 10.1186/s12864-024-10361-8.


Statistical analysis of sequential motifs at biologically relevant protein-protein interfaces.

Frank Y, Unger R, Senderowitz H Comput Struct Biotechnol J. 2024; 23:1244-1259.

PMID: 38550974 PMC: 10973581. DOI: 10.1016/j.csbj.2024.03.004.


Cracking the black box of deep sequence-based protein-protein interaction prediction.

Bernett J, Blumenthal D, List M Brief Bioinform. 2024; 25(2).

PMID: 38446741 PMC: 10939362. DOI: 10.1093/bib/bbae076.


Pathogen-driven cancers from a structural perspective: Targeting host-pathogen protein-protein interactions.

Ozdemir E, Nussinov R Front Oncol. 2023; 13:1061595.

PMID: 36910650 PMC: 9997845. DOI: 10.3389/fonc.2023.1061595.


A Bioinformatic Approach Based on Systems Biology to Determine the Effects of SARS-CoV-2 Infection in Patients with Hypertrophic Cardiomyopathy.

Han X, Wang F, Yang P, Di B, Xu X, Zhang C Comput Math Methods Med. 2022; 2022:5337380.

PMID: 36203534 PMC: 9532139. DOI: 10.1155/2022/5337380.


References
1.
Alonso-Lopez D, Campos-Laborie F, Gutierrez M, Lambourne L, Calderwood M, Vidal M . APID database: redefining protein-protein interaction experimental evidences and binary interactomes. Database (Oxford). 2019; 2019. PMC: 6354026. DOI: 10.1093/database/baz005. View

2.
Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y . DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics. 2019; 36(4):1057-1065. PMC: 8215920. DOI: 10.1093/bioinformatics/btz721. View

3.
Fu L, Niu B, Zhu Z, Wu S, Li W . CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28(23):3150-2. PMC: 3516142. DOI: 10.1093/bioinformatics/bts565. View

4.
Chowdhury S, Shatabda S, Dehzangi A . iDNAProt-ES: Identification of DNA-binding Proteins Using Evolutionary and Structural Features. Sci Rep. 2017; 7(1):14938. PMC: 5668250. DOI: 10.1038/s41598-017-14945-1. View

5.
Marsh J, Teichmann S . Structure, dynamics, assembly, and evolution of protein complexes. Annu Rev Biochem. 2014; 84:551-75. DOI: 10.1146/annurev-biochem-060614-034142. View