» Articles » PMID: 33093532

Prediction of Rifampicin Resistance Beyond the RRDR Using Structure-based Machine Learning Approaches

Overview
Journal Sci Rep
Specialty Science
Date 2020 Oct 23
PMID 33093532
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce protein affinities within the RNA polymerase complex, subsequently reducing nucleic acid affinity. Here, we have used these insights to develop a computational rifampicin resistance predictor capable of identifying resistant mutations even outside the well-defined rifampicin resistance determining region (RRDR), using clinical M. tuberculosis sequencing information. Our tool successfully identified up to 90.9% of M. tuberculosis rpoB variants correctly, with sensitivity of 92.2%, specificity of 83.6% and MCC of 0.69, outperforming the current gold-standard GeneXpert-MTB/RIF. We show our model can be translated to other clinically relevant organisms: M. leprae, P. aeruginosa and S. aureus, despite weak sequence identity. Our method was implemented as an interactive tool, SUSPECT-RIF (StrUctural Susceptibility PrEdiCTion for RIFampicin), freely available at https://biosig.unimelb.edu.au/suspect_rif/ .

Citing Articles

The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance.

Bilal H, Khan M, Khan S, Shafiq M, Fang W, Khan R Comput Struct Biotechnol J. 2025; 27:423-439.

PMID: 39906157 PMC: 11791014. DOI: 10.1016/j.csbj.2025.01.006.


From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance - a Comprehensive Review.

de la Lastra J, Wardell S, Pal T, de la Fuente-Nunez C, Pletzer D J Med Syst. 2024; 48(1):71.

PMID: 39088151 PMC: 11294375. DOI: 10.1007/s10916-024-02089-5.


Phylogenetic Analysis and Comparative Genomics of Brucella abortus and Brucella melitensis Strains in Egypt.

Elrashedy A, Nayel M, Salama A, Zaghawa A, Abdelsalam N, Hasan M J Mol Evol. 2024; 92(3):338-357.

PMID: 38809331 PMC: 11169049. DOI: 10.1007/s00239-024-10173-0.


Tackling the Antimicrobial Resistance "Pandemic" with Machine Learning Tools: A Summary of Available Evidence.

Rusic D, Kumric M, Seselja Perisin A, Leskur D, Bukic J, Modun D Microorganisms. 2024; 12(5).

PMID: 38792673 PMC: 11123121. DOI: 10.3390/microorganisms12050842.


Engineering G protein-coupled receptors for stabilization.

Velloso J, de Sa A, Pires D, Ascher D Protein Sci. 2024; 33(6):e5000.

PMID: 38747401 PMC: 11094779. DOI: 10.1002/pro.5000.


References
1.
Pires D, C de Melo-Minardi R, Dos Santos M, da Silveira C, Santoro M, Meira Jr W . Cutoff Scanning Matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns. BMC Genomics. 2012; 12 Suppl 4:S12. PMC: 3287581. DOI: 10.1186/1471-2164-12-S4-S12. View

2.
Karmakar M, Globan M, Fyfe J, Stinear T, Johnson P, Holmes N . Analysis of a Novel pncA Mutation for Susceptibility to Pyrazinamide Therapy. Am J Respir Crit Care Med. 2018; 198(4):541-544. PMC: 6118032. DOI: 10.1164/rccm.201712-2572LE. View

3.
Coll F, Phelan J, Hill-Cawthorne G, Nair M, Mallard K, Ali S . Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet. 2018; 50(2):307-316. DOI: 10.1038/s41588-017-0029-0. View

4.
Steiner A, Stucki D, Coscolla M, Borrell S, Gagneux S . KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics. 2014; 15:881. PMC: 4197298. DOI: 10.1186/1471-2164-15-881. View

5.
Phelan J, Coll F, McNerney R, Ascher D, Pires D, Furnham N . Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med. 2016; 14:31. PMC: 4804620. DOI: 10.1186/s12916-016-0575-9. View