6.
Ruggenenti P, Debiec H, Ruggiero B, Chianca A, Pelle T, Gaspari F
. Anti-Phospholipase A2 Receptor Antibody Titer Predicts Post-Rituximab Outcome of Membranous Nephropathy. J Am Soc Nephrol. 2015; 26(10):2545-58.
PMC: 4587688.
DOI: 10.1681/ASN.2014070640.
View
7.
Brenner B, Chertow G
. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis. 1994; 23(2):171-5.
View
8.
Venkatareddy M, Wang S, Yang Y, Patel S, Wickman L, Nishizono R
. Estimating podocyte number and density using a single histologic section. J Am Soc Nephrol. 2013; 25(5):1118-29.
PMC: 4005315.
DOI: 10.1681/ASN.2013080859.
View
9.
Hoy W, Douglas-Denton R, Hughson M, Cass A, Johnson K, Bertram J
. A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl. 2003; (83):S31-7.
DOI: 10.1046/j.1523-1755.63.s83.8.x.
View
10.
Medjeral-Thomas N, Lawrence C, Condon M, Sood B, Warwicker P, Brown H
. Randomized, Controlled Trial of Tacrolimus and Prednisolone Monotherapy for Adults with Minimal Change Disease: A Multicenter, Randomized, Controlled Trial. Clin J Am Soc Nephrol. 2020; 15(2):209-218.
PMC: 7015084.
DOI: 10.2215/CJN.06180519.
View
11.
Remy P, Audard V, Natella P, Pelle G, Dussol B, Leray-Moragues H
. An open-label randomized controlled trial of low-dose corticosteroid plus enteric-coated mycophenolate sodium versus standard corticosteroid treatment for minimal change nephrotic syndrome in adults (MSN Study). Kidney Int. 2018; 94(6):1217-1226.
DOI: 10.1016/j.kint.2018.07.021.
View
12.
Koike K, Tsuboi N, Utsunomiya Y, Kawamura T, Hosoya T
. Glomerular density-associated changes in clinicopathological features of minimal change nephrotic syndrome in adults. Am J Nephrol. 2011; 34(6):542-8.
DOI: 10.1159/000334360.
View
13.
Siegerist F, Ribback S, Dombrowski F, Amann K, Zimmermann U, Endlich K
. Structured illumination microscopy and automatized image processing as a rapid diagnostic tool for podocyte effacement. Sci Rep. 2017; 7(1):11473.
PMC: 5597580.
DOI: 10.1038/s41598-017-11553-x.
View
14.
Puelles V, Fleck D, Ortz L, Papadouri S, Strieder T, Bohner A
. Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney Int. 2019; 96(2):505-516.
DOI: 10.1016/j.kint.2019.02.034.
View
15.
Kronbichler A, Gauckler P, Bruchfeld A
. Rituximab in minimal change disease and focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2019; 36(6):983-985.
DOI: 10.1093/ndt/gfz205.
View
16.
Yoshizawa N, Kusumi Y, Matsumoto K, Oshima S, Takeuchi A, Kawamura O
. Studies of a glomerular permeability factor in patients with minimal-change nephrotic syndrome. Nephron. 1989; 51(3):370-6.
DOI: 10.1159/000185325.
View
17.
Maas R, Deegens J, Beukhof J, Reichert L, Ten Dam M, Beutler J
. The Clinical Course of Minimal Change Nephrotic Syndrome With Onset in Adulthood or Late Adolescence: A Case Series. Am J Kidney Dis. 2017; 69(5):637-646.
DOI: 10.1053/j.ajkd.2016.10.032.
View
18.
Noone D, Iijima K, Parekh R
. Idiopathic nephrotic syndrome in children. Lancet. 2018; 392(10141):61-74.
DOI: 10.1016/S0140-6736(18)30536-1.
View
19.
Fogo A, Hawkins E, Berry P, Glick A, Chiang M, MacDonell Jr R
. Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int. 1990; 38(1):115-23.
DOI: 10.1038/ki.1990.175.
View
20.
Denic A, Mathew J, Nagineni V, Thompson R, Leibovich B, Lerman L
. Clinical and Pathology Findings Associate Consistently with Larger Glomerular Volume. J Am Soc Nephrol. 2018; 29(7):1960-1969.
PMC: 6050922.
DOI: 10.1681/ASN.2017121305.
View