» Articles » PMID: 33082716

Inter- and Intra-patient ECG Heartbeat Classification for Arrhythmia Detection: A Sequence to Sequence Deep Learning Approach

Overview
Date 2020 Oct 21
PMID 33082716
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Electrocardiogram (ECG) signal is a common and powerful tool to study heart function and diagnose several abnormal arrhythmias. While there have been remarkable improvements in cardiac arrhythmia classification methods, they still cannot offer acceptable performance in detecting different heart conditions, especially when dealing with imbalanced datasets. In this paper, we propose a solution to address this limitation of current classification approaches by developing an automatic heartbeat classification method using deep convolutional neural networks and sequence to sequence models. We evaluated the proposed method on the MIT-BIH arrhythmia database, considering the intra-patient and inter-patient paradigms, and the AAMI EC57 standard. The evaluation results for both paradigms show that our method achieves the best performance in the literature (a positive predictive value of 96.46% and sensitivity of 100% for the category S, and a positive predictive value of 98.68% and sensitivity of 97.40% for the category F for the intra-patient scheme; a positive predictive value of 92.57% and sensitivity of 88.94% for the category S, and a positive predictive value of 99.50% and sensitivity of 99.94% for the category V for the inter-patient scheme.).

Citing Articles

Accurate Arrhythmia Classification with Multi-Branch, Multi-Head Attention Temporal Convolutional Networks.

Bi S, Lu R, Xu Q, Zhang P Sensors (Basel). 2025; 24(24.

PMID: 39771858 PMC: 11679161. DOI: 10.3390/s24248124.


Deep residual 2D convolutional neural network for cardiovascular disease classification.

Elyamani H, Salem M, Melgani F, Yhiea N Sci Rep. 2024; 14(1):22040.

PMID: 39327440 PMC: 11427665. DOI: 10.1038/s41598-024-72382-3.


End-to-End Signal Classification in Signed Cumulative Distribution Transform Space.

Rubaiyat A, Li S, Yin X, Shifat-E-Rabbi M, Zhuang Y, Rohde G IEEE Trans Pattern Anal Mach Intell. 2024; 46(9):5936-5950.

PMID: 38427542 PMC: 11345860. DOI: 10.1109/TPAMI.2024.3372455.


Inter-patient ECG heartbeat classification for arrhythmia classification: a new approach of multi-layer perceptron with weight capsule and sequence-to-sequence combination.

Zhou C, Li X, Feng F, Zhang J, Lyu H, Wu W Front Physiol. 2023; 14:1247587.

PMID: 37841320 PMC: 10569428. DOI: 10.3389/fphys.2023.1247587.


A framework for comparative study of databases and computational methods for arrhythmia detection from single-lead ECG.

Merdjanovska E, Rashkovska A Sci Rep. 2023; 13(1):11682.

PMID: 37468574 PMC: 10356811. DOI: 10.1038/s41598-023-38532-9.


References
1.
de Chazal P, ODwyer M, Reilly R . Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng. 2004; 51(7):1196-206. DOI: 10.1109/TBME.2004.827359. View

2.
Moody G, Mark R . The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001; 20(3):45-50. DOI: 10.1109/51.932724. View

3.
Luz E, Schwartz W, Camara-Chavez G, Menotti D . ECG-based heartbeat classification for arrhythmia detection: A survey. Comput Methods Programs Biomed. 2016; 127:144-64. DOI: 10.1016/j.cmpb.2015.12.008. View

4.
Escalona-Moran M, Soriano M, Fischer I, Mirasso C . Electrocardiogram classification using reservoir computing with logistic regression. IEEE J Biomed Health Inform. 2014; 19(3):892-8. DOI: 10.1109/JBHI.2014.2332001. View

5.
Mousavi S, Afghah F, Razi A, Rajendra Acharya U . ECGNET: Learning where to attend for detection of atrial fibrillation with deep visual attention. IEEE EMBS Int Conf Biomed Health Inform. 2020; 2019. PMC: 7570949. DOI: 10.1109/BHI.2019.8834637. View