» Articles » PMID: 33081421

Expression Pattern of the SARS-CoV-2 Entry Genes and in the Respiratory Tract

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2020 Oct 21
PMID 33081421
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

To address the expression pattern of the SARS-CoV-2 receptor ACE2 and the viral priming protease TMPRSS2 in the respiratory tract, this study investigated RNA sequencing transcriptome profiling of samples of airway and oral mucosa. As shown, ACE2 has medium levels of expression in both small airway epithelium and masticatory mucosa, and high levels of expression in nasal epithelium. The expression of ACE2 is low in mucosal-associated invariant T (MAIT) cells and cannot be detected in alveolar macrophages. TMPRSS2 is highly expressed in small airway epithelium and nasal epithelium and has lower expression in masticatory mucosa. Our results provide the molecular basis that the nasal mucosa is the most susceptible locus in the respiratory tract for SARS-CoV-2 infection and consequently for subsequent droplet transmission and should be the focus for protection against SARS-CoV-2 infection.

Citing Articles

Immediate myeloid depot for SARS-CoV-2 in the human lung.

Magnen M, You R, Rao A, Davis R, Rodriguez L, Bernard O Sci Adv. 2024; 10(31):eadm8836.

PMID: 39083602 PMC: 11290487. DOI: 10.1126/sciadv.adm8836.


COVID-19 vaccines and beyond.

Liu Y, Li D, Han J Cell Mol Immunol. 2024; 21(3):207-209.

PMID: 38273150 PMC: 10902311. DOI: 10.1038/s41423-024-01132-2.


Mucosal-Associated Invariant T Cells are not susceptible in vitro to SARS-CoV-2 infection but accumulate into the lungs of COVID-19 patients.

Huang X, Kantonen J, Nowlan K, Nguyen N, Jokiranta S, Kuivanen S Virus Res. 2024; 341:199315.

PMID: 38211733 PMC: 10826420. DOI: 10.1016/j.virusres.2024.199315.


Structural understanding of SARS-CoV-2 virus entry to host cells.

Le K, Kannappan S, Kim T, Lee J, Lee H, Kim K Front Mol Biosci. 2023; 10:1288686.

PMID: 38033388 PMC: 10683510. DOI: 10.3389/fmolb.2023.1288686.


Initial immune response after exposure to or to SARS-COV-2: similarities and differences.

Aiello A, Najafi-Fard S, Goletti D Front Immunol. 2023; 14:1244556.

PMID: 37662901 PMC: 10470049. DOI: 10.3389/fimmu.2023.1244556.


References
1.
Wu Z, McGoogan J . Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239-1242. DOI: 10.1001/jama.2020.2648. View

2.
Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, van Baren M . Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28(5):511-5. PMC: 3146043. DOI: 10.1038/nbt.1621. View

3.
Bunyavanich S, Do A, Vicencio A . Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020; 323(23):2427-2429. PMC: 7240631. DOI: 10.1001/jama.2020.8707. View

4.
Li W, Moore M, Vasilieva N, Sui J, Wong S, Berne M . Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965):450-4. PMC: 7095016. DOI: 10.1038/nature02145. View

5.
Ziegler C, Allon S, Nyquist S, Mbano I, Miao V, Tzouanas C . SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020; 181(5):1016-1035.e19. PMC: 7252096. DOI: 10.1016/j.cell.2020.04.035. View